Cold and dense QCD matter

GCOE sympodium Feb. 15, 2010

Yoshimasa Hidaka

<section-header>

~10⁻¹⁰m

Quantum ElectroDynamics U(1) gauge theory Electron Photon

small mass, spin 1/2massless, spin 1charge: -10

Quantum ChromoDynamics SU(3) gauge theory Gluon Quark massless, spin 1 small mass, spin 1/2 color charge: 3 (R,G,B) 8

Asymptotic freedom Confinement Chiral symmetry breaking

Asymptotic freedom

At high energy scale, interaction becomes weaker

Confinement

Confinement

No free quarks and gluons

Confinement

No free quarks and gluons

Baryons (proton, neutron, ... and mesons (pion, Kaon,...)

Chiral symmetry = a symmetry of massless quarks

Chiral symmetry breaking

Chiral symmetry breaking

Chiral symmetry breaking

Light pion as Nambu-Goldstone boson

Quarks \sim 1-7MeV

Nucleon $\sim 940 {\rm MeV}$

Y. Nambu, spontaneous symmetry breaking

What happens in Extreme conditions?

Hot Dense, cold

Hot Dense, cold

Phase diagram of water

Quark Gluon Plasma ~2×10¹² °C

Quark Gluon Plasma ~2×10¹² °C

Quark Gluon Plasma ~2×10¹² °C

Quark matter

Lattice QCD

From dilute to dense

Gas of nucleons.

Nuclear matter

Fermi liquid of nucleons. Pion condensation,

More dense.

Nucleons start overlapping.

Quarks highly degenerate.

Boundary of nucleon vanishes, and quark Fermi-sea is formed.

Ordinary scenario: Yes.

Ordinary scenario: Yes.

Deconfined quarks, and gluons.

Ordinary scenario: Yes.

Deconfined quarks, and gluons. color super conductivities,...

New scenario: No!

New scenario: No!

There is a window of confined matter with quark Fermi-sea. This is true at least, in large-*N_c*.

New scenario: No!

There is a window of confined matter with quark Fermi-sea. This is true at least, in large-*N*_c.

Quarkyonic matter \mathcal{R} \mathcal{R} $R \sim 1/\Lambda_{\rm QCD}$ \mathcal{R} </tr

Quarkyonic matterMMRMMMMMMM

Quarkyonic limit Dense: $\mu \gg \Lambda_{\rm QCD}$ Confined: $\Lambda_{\rm QCD} \gg m_D$

Quarkyonic matter

 p_z

Larry McLerran and Robert Pisarski (2007)

 $p_T = p_x, p_y$

Quark Fermi sea

Quark + Baryonic = Quarkyonic

Quarkyonic matter

 p_z

Larry McLerran and Robert Pisarski (2007)

 $p_T = p_x, p_y$

Quark Fermi sea

Excitation is Baryonic or mesonic

Quark + Baryonic = Quarkyonic

How about chiral symmetry?

Chiral symmetry

 $\langle \psi \psi
angle$ Order parameter

Chiral symmetry

In vacuum, quark anti-quark pairing. In medium, quark anti-quark pairing or quark hole pairing.

Particle-antiparticle

$$P_{\rm tot} = 0$$

homogeneous

homogeneous

Deryagin, Grigoriev, & Rubakov ('92), Shuster & Son ('99), Rapp, Shuryak, and Zahed ('00).

$$\frac{P_T}{P_z} \sim \frac{\Lambda_{\rm QCD}}{\mu} \ll 1$$

Transverse component can be neglected.

 $p_T = p_x, p_y$

 μ

$$\frac{P_T}{P_z} \sim \frac{\Lambda_{\rm QCD}}{\mu} \ll 1$$

Transverse component can be neglected.

Quarks: effectively 1+1D Gluons: 3+1D

 $p_T = p_x, p_y$

$$\frac{P_T}{P_z} \sim \frac{\Lambda_{\rm QCD}}{\mu} \ll 1$$

Transverse component can be neglected.

Quarks: effectively 1+1D Gluons: 3+1D

Integrating over transverse momentum of gluon

Effective model in 1+1D.

 $p_T = p_x, p_y$

$$\frac{P_T}{P_z} \sim \frac{\Lambda_{\rm QCD}}{\mu} \ll 1$$

Transverse component can be neglected.

Quarks: effectively 1+1D Gluons: 3+1D

Integrating over transverse momentum of gluon

Effective model in 1+1D.

Density Wave Type Exciton Type

$$\frac{P_T}{P_z} \sim \frac{\Lambda_{\rm QCD}}{\mu} \ll 1$$

Transverse component can be neglected.

Quarks: effectively 1+1D Gluons: 3+1D

Integrating over transverse momentum of gluon

Effective model in 1+1D.

Density Wave Type

Exciton Type

 $p_T = p_x, p_y$

Quarkyonic chiral spirals T. Kojo, Y.H., L. McLerran, and R. Pisarski Nonuniform condensation realizes. $\langle \overline{\psi}\psi\rangle = C\cos(2\mu z)$ $\langle \overline{\psi}\gamma^0\gamma^3\psi\rangle = C\sin(2\mu z)$ C=constChiral symmetry: **Quarkyonic Chiral Spirals** locally broken, globally restored. $\langle \overline{\psi} \psi \rangle$ Baryon number is spatially $i \overline{\psi}_{\gamma} 0_{\gamma} 3_{\psi}$ const. \mathcal{Z}

Summary

Summary

Summary

