

The First Neutrinos in the T2K neutrino oscillation experiment

T. Nakaya (Kyoto University)

<u>T2K</u> Experiment Tokai-to(2)-Kamioka Nuclear and Particle Physics Exp 2 20092 Materials and Science Facility **Jnder Construction** 3GeV Syr TOKAI 295 km KAMIOKA Peri lerator-Driven Transmutation Experimental Facility **N**₁ 750k n, ^lm **N**₂ n, n₃ Super-KAMIOK n_c LOI: 2001 Proposal: 2002 前置検出器 Mt. Noguchi-Goro 2,924m Construction: 2004~2008 Mt. Ikeno-Yama J-PARC Pure n_mbeam 1,360m water equiv. 1,000m NEUTRINO BEAM 280m⁻¹

295 km

3

NJ-PARCニュートリノビーム生成 2009年4月23日 19時09分

The First Neutrino Beam

The First Neutrino Events at the neutrino detector in J-PARC November 22rd, 2009

Your source for the latest research news

振

ノ

質

約

中

ノ

1

検

1+

今

Science News

💣 Share 🛛 📝 Blog 🔍 Cite

£

Similasan

With First Neutrino Events, Physicists Closer to Answering Why Only Matter in Universe

arache

Pink Ere

ScienceDaily (Nov. 27, 2009) — Physicists from the Japanese-led multi-national T2K neutrino collaboration have just announced that over the weekend they detected the first neutrino events generated by their newly built neutrino beam at the J-PARC (Japan Proton Accelerator Research Complex) accelerator laboratory in Tokai, Japan.

See Also:

Space & Time

- Dark Matter
- Astrophysics
- Cosmic Rays

Matter & Energy

Quantum Physics

Protons from the 30-GeV Main Ring synchrotron were directed onto a carbon target, where their collisions produced charged particles called pions. These pions travelled through a helium-filled volume where they decayed to produce a beam of the elusive particles called neutrinos. These neutrinos then flew 200

First neutrino interaction in ND280 off axis detector December 19, 2009

Event number : 491 | Partition : INVALID | Run number : 1539 | Spill : INVALID | SubRun number :0 | Time : Sat 2009-12-19 07:40:13 JST | Trigger : 1

NO Super-K neutrino events yet. (Under beam/detector commissioning)

Plan to start the physics run in March

Super-K III

Introduction

Neutrinos.

- Neutrinos are one of the most abundant particles in our universe.
 - No. 1: Photons (light) [~400g/cm³]
 - No. 2: Neutrinos (~300n/cm³)
 although undetectable...
 - $n_{Baryon} \sim 0.000001/cm^3$

Neutrinos around us

Supernova

Nobel Prize in Physics, year 2002

SUN

60 billion r per sec•cm²

Elementary Particle Physics

Particles and Force

	Charge	1 st Generati on	2 nd Genera tion	3 rd Genera tion	SUSY W±、Z ⁰	
Lepton	0	Νe	Ωm	Νŧ	Weak	
	-1	e	m	t	Electro-magentci	
Quark	2/3	u	C	t	g Stuoroo	
	-1/3	d	S	b	_ Strong	
+Anti-particles						

TT

Neutrinos

- Only have week interactions
 - **Small mass**
 - Origin in physics beyond the standard model? lixing
 - Mixing
 - 3 neutrinos are mixed
 - Different mixing patterns from that of quarks
 - What symmetry exists?
 - No experimental information on the CP symmetry

Much exciting to study neutrinos after the discovery of neutrino oscillation in 1998

quark

Mixing Matrix

Kobayashi-Maskaw matrix

a) The weak neutrinos must be re-defined by a relation

$$\begin{array}{l} \nu_e = \nu_1 \cos \delta - \nu_2 \sin \delta, \\ \nu_\mu = \nu_1 \sin \delta + \nu_2 \cos \delta. \end{array} \right\}$$

$$(2 \cdot 18)$$

The leptonic weak current $(2\cdot 9)$ turns out to be of the same form with $(2\cdot 1)$. In the present case, however, weak neutrinos are *not stable* due to the occurrence of a virtual transmutation $\nu_e \rightleftharpoons \nu_{\mu}$ induced by the interaction $(2\cdot 10)$. If the mass difference between ν_2 and ν_1 , i.e. $|m_{\nu_2} - m_{\nu_1}| = m_{\nu_2}^{*}$ is assumed to be SAKATA a few Mev, the transmutation time $T(\nu_e \rightleftharpoons \nu_{\mu})$ becomes $\sim 10^{-18}$ sec for fast neutrinos with a momentum of $\sim \text{Bev/c}$. Therefore, a chain of reactions such as¹⁰

$$\pi^+ \to \mu^+ + \nu_\mu, \qquad (2 \cdot 19a)$$

$$\nu_{\mu} + Z$$
(nucleus) $\rightarrow Z' + (\mu^{-} \text{ and/or } e^{-})$ (2.19b)

is useful to check the two-neutrino hypothesis only when $|m_{\nu_2} - m_{\nu_1}| \lesssim 10^{-6} \,\mathrm{Mev}$

$$\begin{array}{c} \mathbf{\hat{q}} \mathbf{\hat{n}}_{m} \div = \mathbf{\hat{q}} V_{m1} \quad V_{m2} \quad V_{m3} \div \mathbf{\hat{q}} n_{2} \div \mathbf{\hat{q}} \\ \mathbf{\hat{q}} \mathbf{\hat{n}}_{t} \stackrel{\div}{\boldsymbol{\Theta}} \quad \mathbf{\hat{q}} V_{t1} \quad V_{t2} \quad V_{t3} \stackrel{\bullet}{\boldsymbol{\Theta}} \mathbf{\hat{q}} n_{3} \stackrel{\bullet}{\boldsymbol{\Theta}} \end{array}$$

Discovery of neutrino oscillation(1998) Evidence of neutrino mass

Neutrino Oscillation

Maki-Nakagawa-Sakata matrix

Weak State V_{e2} V_{e3} e1 Δm_{12}^2 $V_{m1} V_{m2} V_{m3} - V_{m3} - V_{t1} V_{t2} V_{t3}$ $\Delta m_{23}^{2} (\sim m_{13}^{2})$ $|m_2 - m_1| < < |m_3 - m_2|$

Atmospheric Neutrinos OscillationSolar Neutrino Oscillations

Status of Neutrino Experiments

- Study of atmospheric neutrino oscillations with accelerator neutrinos.
 - Confirmation: K2K(Japan)、MINOS(US)、OPERA
 (Europe)
 - $\ \Delta m_{23}{}^2 , \ \textbf{q}_{23}$
 - High Sensitive and High Precision experiments: **T2K**
 - − Δm_{23}^2 , q_{23} , q_{13} ⇒ CP study in future
- Study of solar neutrino oscillations with the reactor experiemnts
 - Confirmation and precision measurements: KamLAND
 - $-\Delta m_{12}^{2}, q_{12}^{2}$
 - Observation of geo-neutrinos
 - New double beta decay measurements

T2K(Tokai-to[2]-Kamioka)

2. Components of the experiments.

- Accelerator/Neutrino Beams
- Near Detectors
- Far Detectors

J-PARC Accelerators

By Prof. M. Yoshioka at the J-PARC PAC meeting in January 2010

J-PARC Accelerator status

Run-26 (early October) for 2 weeks **q**Linac beam: Peak current 5mA, pulse width 100~500ms **q**RCS beam: 2 bunch, 20kW **q**Purpose: Beam loss study at the downstream of charge stripping foil using extinction monitor (for me conversion experiment)

Run-27 (end of October~early November) for 9 days**q**Linac beam:5mA and 500ms, or 15mA and 100ms**q**RCS beam:2 bunch, 100kW**q**Purpose:Beam loss study

Run-28 (end of	November) for 1 week
q Linac beam:	15mA and 500ms
q RCS beam:	2 bunch, RCS 300kWaMR100kW
q Purpose: <mark>study</mark>	Challenge to high power operation and beam loss

Primary Beam-line for neutrinos

Proton beam monitors

Position: 20 x ESMs Profile: 19 x SSEM s Intensity: 5x CTs

- Being assembled
- Installation started in prep sect

SSEM

- Twenty monitors are purchased in this FY
- OTR detector (provided by Canada)
- Provide all-time profile just in front of target
- Mirrors, rad-hard camera delivered
- Manufacturing, assembling in progress

Installed monitor chamber

First shot of the proton beam

Neutrino Beam generation

Decay Volume

 \ge

 $\mathbf{h} = \mathbf{h}$

Under 3NBT (FY05)

L=94m, 6m thick

concrete wall

40 paths of cooling channels

can accel

2008/03/07

Upstream

Downstream

MW beam

Muon monitor for the n beam

$-\mathbf{p} \rightarrow \mathbf{m}$ decay and μ measure

Horn focusing: Muon Monitor Signal

MUMON Silicon PIN photodiode array

Near Neutrino Detectors

Installation to NM pit

7/6 ~ 7/16 for horizontal modules 8/2 ~ 8/11 for vertical modules

All horizontal and vertical modules were Installed.

INGRID : First neutrino event candidate

280m Off-Axis Sub-Detectors

Off-axis Detectors

New developments of technology

Large TPC and Micromegas

Total 120k channels

Super-Kamiokande IV

Neutrino Events (K2K)

Start the experiment in April 2009.

- In 2009, beam-line & detector commissioning were performed.
- 100kW trial (so far 20kW is OK, but a trouble in 40kW)
- Start the physics run in March 2010.
 - à fist result in summer 2010
- Beyond 100kW: 100**à** 750kW(Design)
 - Beam loss control
 - Linac 400 MeV energy recovery and upgrade of the RCS injection system
 - Important Physics result around 2012 (my personal view)
- Long-term plan toward power frontier (~1.7 MW)
 - KEK roadmap
 - Anti-n running

Measurement of q_{23} , Dm_{23}^2

Use 1 ring mlike events (= Quasi-Elastic enhanced sample) to reconstruct neutrino energy.

Ratio of En to non-oscillation

<u>**Q**₁₃ measurement</u> (n_e appearance search)

sin²2q₂₃=1and d=0 are assumed.

Signal:

• 1ring e-like event (CC QE sample)

Background:

- beam n_e contamination (0.4% of n_m)
- mis-reconstructed p⁰ event

Background Suppression (Dm²=2.5x10⁻³eV²,sin²2q₁₃=0.1)

1.

FCFV, E_{vis} >100MeV

12K Physics Sensitivity

n_e appearance (Strong d dependence)

~10 times improvement from CHOOZ

CP violation study

n beam is an option

(Note: Old study with 2 ° off-axis)

Future Upgrade for the CP measurements

Summary

- The T2K neutrino oscillation experiment started in April 2009
- T2K is the front runner in neutrino experiments.
 - Many foreign researchers are in the collaboration.
- We soon have the new result in summer 2010.
 - First search for electron neutrino appearance.
 - Precise measurements of neutrino oscillations.
- We expect significant results around 2012.
 - Discovery of electron neutrino appearance?
 - Open the window to study CP violation in neutrinos.

陽子崩壊の探索

予想外

フレスイブンプ1000mg 10 ちまれっす1000 - スム:田子 ハゴ ト、家で日本5 かけ取れるサース ト、家で日本5 かけ取れるサース ト・タース000 トッパル スポート ちょうかった000 トッパル スポート 第45 年の1100 トッパル スポート 1000 トゥーム 1000 トゥー

大気ニュートリノが最大のバックグランド - シグナル: - **p→e⁺p⁰** - バックグランド: - **n**_e+**p→e⁺p⁰+n**、**n**_e+**n→e⁻p⁰+p** (注)n,pは測定器で見えない。

大気ニュートリノの研究を! ⇒ニュートリノ振動発見へ

Test their real existence of atm. n (Reines, Miyake etc., 1960's)8

- 太陽ニュートリノ観測の動機

太陽ニュートリ

- 太陽ニュートリノ観測
 - 観測値が予想の1/3
 - Kamiokande、Super-Kamiokande 観測値が予想の~40%

旹遍性

Letter of Intent: A Long Baseline Neutrino Oscillation Experiment using the JHF 50 GeV Proton-Synchrotron and the Super-Kamiokande Detector

February 3, 2000

-V1.0-

JHF Neutrino Working Group

Y. Itow¹ Y. Obayashi, Y. Totsuka Institute for Cosmic Ray Fesearch, University of Tokyo, Tanashi, Tokyo 188-8502, Japan

Y. Hayato, H. Ishino, T. Kobayashi², K. Nakamura, M. Sakuda Inst. of Particle and Nuclear Studies, High Energy Accelerator Research Org. (KEK), Tsukuba, Ibaraki 305-0801, Japan

T. Hara Department of Physics, Kobe University, Kobe, Hyogo 657-8501, Japan

T. Nakaya³ K. Nishikawa⁴ Department of Physics, Kyoto University, Kyoto 606-8502, Japan

T. Hasegawa, K. Ishihara, A. Suzuki Department of Physics, Tohoku University, Sendai, Miyagi, 980-8578, Japan

buper Kamiokande Contact Person: itow@suketto.icrr.u-tokyo.ac.jp Veutrino Beam Contact Person: kobayasi@neutrino.kek.jp Vear Detector Contact Person: nakaya@scphys.kyoto-u.ac.jp grganizer: nishikaw@neutrino.kek.jp 中家 剛 1. Overview of the experiment 2. Physics Motivation

JHFニュートリノ実験

- 3. JHF facility and v beam
- 4. Physics Sensitivity
- 5. Additional Options
- 6. Summary and Conclusion

日本物理学会シンポジウム 平成20年3月25日@近畿大学

日本が主導する ニュートリノ振動・質量実験の現状と将来

T2Kの物理

中家 剛(京都大学) for the T2K collaboration

 The JHF-Kamioka neutrino project: hep-ex/0106019
 Citation: 557

日本物理学会・新潟大学 <u>2000年9月23日</u> 宇宙線、素粒子論、素粒子実験 合同シンポジウム

(京大理)

Apparatus in the TS vessel

Full prototype delivered in Dec. '07
He gas flow test, achieve 650Nm³/h (200m/s)

注目の実験

物質・生命のなぞに 新加速器がせまる 大強度陽子加速器計画

J-PARC を徹底紹介 世界最高レベルの世話をもつ、多日的な大型の枪子放流首

「J-PARC (ジェイバーク)」が2008年末に細胞する、J-PARC は、順子を光速定くまで加速して信的の原子核に占つけ、中 ミチタ中間子、ミュオンなど、さまざまな「ニスピーム」を言 G. これらの意味性の二次ビームを使い、最先端の原子県・東 料子実験を行ったり、 燃料電池に使われる素材やタンパク質の ●四を調べたりするのだ、」PARCの金額を紹介する。

In 高エネルギー加速器研究機構 日本原子力研究開発機構

短期集中連載:カミオカンデとスーパーカミオカンンデ 物理学を変えた四半世紀 2 素粒子論の標準モデルを超えて……100ページ 中島林森(編集部)/協力:巨塚洋二(東京大学) 船石だと思われていた素粒子理論の 穏準モデルに、最初の大きな亀裂が走 かだ

ったのは1998年のことだった。大二 抱がう ユースの発信地は日本、しかも東京か 在は標

> 国際リニアコライタ 日本の進むべき道い

超微小質量がもたらし

スーパーカミオカンデは。宇宙記 あなたの体に 気ニュートリノ〉の精密観測によ 象が起きていることを発見した。 ■ニュートリノ振動は、ある種類の る現象で、ニュートリノが非常に 「ニュートリノは質量ゼロ」とする スーパーカミオカンデの大発見(現在、ニュートリノが質量を持つ

潜む"他社

歌声の利

un 1100

制用集中进载 物理学を変えた ニュートリノ質量の 発見

ARC: CO. ン2008年4 E したニュートリノの "変身"をとらえる

aprenda.

い昔によって一編有名になった。 にあるニュートリノ目対映第「スーパーカミオカンデ」 ン・ブラウン ともたず、地球すらも発達してし に入材する、このとき、一種がニュートリノ感動をおこ **(細胞がある、前時な話**だ) 越前敏弥w U.J.B. LUSCIES, HO 実験によって細かめられてい とよばれている問題を

ALL DEBRICHARD, DISS. L± 78 +==+++023 UM

物理なにあらたな物学をひらくと知道されている。 愛化しおうニュートリノ(名) ミューニュートリノが増えニュー トリノに変化し、またもとにも CALLENGE CONTRACTORS

し、「関チニュートリノ」に変化すると考えられていた。

理論的には、ニュートリノ変動は、ニュートリノが質 最多らたないとおきない、しかし、素粉子物理学の構成

(素助となっている用品)では、ニュードリノを説明

100万円柱子としてあつかっている。 ウエリ、スコート

リノ協動は始めの認識をことと認識であり、この解剖は、

これをスーパーカミオカンデで展開するのだ。

and some Distance and the local distance of the local

日日中に変化するニュートリノ AND TRACK SATIS-STATES A CONTRACT OF A CONTR

スーパーカニオカンア

Х-не-ла по развити с составлять с составлять с и в составлять поставлять с составлять с на поставлять поставлять с на поставлять с

以下の現象が発見されるのも、夢ではない!

- 牧・中川・坂田行列で予想していなかったCPの破れの 発見。
- ニュートリノ質量の大きさが、宇宙論から決定。
 - ニュートリノのマヨラナ性の発見(2重ベータ崩壊)。
 - 陽子崩壊の発見。
- その他、今我々が予想していない・・・

Superconducting Magnets

SCFM : Superconducting Combined Function Magnet D: 2.6 T, Q: 18.6 T/m, Length: 3.3m, Current: 7,345A@ 50GeV

- 11 doublets in beam-line, Cryogenics installation on time.
- Entire system will be completed by December 2008

Monitor Installation @ inter-connect