# The road to detecting large CP violation in B decays 

Global COE<br>Kyoto University

From Diversity to Universality
A. I. Sanda

Kanagawa University

Nature consists of myriad scales of structure, from the tiny scales of elementary particles and atomic nuclei to the vast scale of the universe.


Our attempt to elucidate the great variety of phenomena exhibited over this complete range of scales is a pursuit of diversity.

By diversifying, we reach the fundamental understanding the universalfaw which makes the universe tick.



Few thousand light years ago,
Supernova exploded
Some 80 y vars ago Koshiba was born

## Constructed KAMIOKANDE

At the time this picture was taken, SN neutrinos where
Only 10 light years away
They reached KAMIOKANDE a month before his retirement
Discovered Neutrino astronomy why looking for proton decay

## With neutrinos, we can see the past

that is, beginning of the universe when it was very very small. Diversity--Univresality

## Anti-Universe

## While real number <br> is sufficient for Mech. and E\&M

Complex number is needed for Quantum Mechanics

## Most important equation:

$$
[p, q]=i \hbar
$$

Under time reversal symmetry If there is no " i " in quantum mechanics. It violates time reversal invariance

$$
U^{\dagger} p U \rightarrow-p
$$

$$
U^{\dagger} q U \rightarrow q
$$

$$
U^{\dagger}[p, q] U \rightarrow-[p, q]
$$

The time reversal symmetry is anti-unitary WIGNER
$U^{\dagger} i \hbar U \rightarrow-i \hbar$

## Quantum Field Theory

A particle state is $\Phi$ represented by

$$
\left[\partial_{\mu}-i e A_{\mu}-m\right]\left[\partial^{\mu}-i e A^{\mu}-m\right] \Phi=0
$$

$$
\left[\partial_{\mu}+i e A_{\mu}-m\right]\left[\partial^{\mu}+i e A^{\mu}-m\right] \Phi^{*}=0
$$

If $\Phi$ corresponds to a particle,
$\Phi^{*}$ corresponds to an antiparticle with same mass and opposite charge

## Complex field implies antiparticle

## CP symmetry


$C P^{-1} \Phi C P=\Phi^{\dagger}$
Particle $\rightarrow$ Antiparticle

The world of particles is exactly the same as the world of antiparticles But, matter and antimatter will annihilate each other
Or, there is anti-universe

## Collision of two galaxies



Spitzer/Hubble View of NGC 2207 \& IC 2163
NASA, ESA / JPL-Caltech / STScl / D. Elmegreen (Vassar]

How do you know that moon is not made out of anti-particles?

- First giant footstep for the mankind
-The moon is not made out of antiparticles


## Is the anti-universe really lost?



Alpha Matter Spectrometer Space Shuttle NASA program


## The biggest puzzle in the universe



## Sakharov's idea

$\gamma \gamma \gamma \gamma \gamma \gamma$

There is a but
of mismatch oh

No partner to annihilate
Present universe is created From these particles

# Big Puzzle <br> <br> GP violation <br> <br> GP violation and our existence 

# The entire universe is created by CP violation at very tiny scale 

## First we needed to

 be certain about the KM theory
## CP symmetry and complex phase

$$
H=c h+c^{*} h^{\dagger}
$$

$h$ particle dynamics
$h^{\dagger}$ antiparticle dynamics

$$
C P h C P^{\dagger}=h^{\dagger}
$$

$C P H C P^{\dagger}=c h^{\dagger}+c^{*} h$

If c is complex, worlds is not invariant under ©P

## How do we detect phase?

Experimentalists can only count the number of particles
They can't use protractor to measure the phase angle!
Measuring an angle by counting particles in optics


## Quiz

Why is electric charge real?
$\vec{F}=e \vec{E}$
$\vec{F}=e(\vec{v} \times \vec{B})$
Even if e is complex,
it can be absorbed in E and B
$\downarrow$

QT
QED

ie $\bar{q} \gamma_{\mu} q A^{\mu}$

Even if e is complex it can be absorbed in $\mathbf{A}$

## Weak <br> Intinteraction



$$
i g_{u d} \bar{u} \gamma_{\mu}\left(1-\gamma_{5}\right) d W^{\mu}
$$


$\operatorname{ig}_{u d} \bar{u} \gamma_{\mu}\left(1-\gamma_{5}\right) d W^{\mu}$ $\operatorname{ig}_{c d} \overline{\mathrm{c}} \gamma_{\mu}\left(1-\gamma_{5}\right) d \quad W^{\mu}$ $i g_{u s} \quad \bar{u} \gamma_{\mu}\left(1-\gamma_{5}\right) s W^{\mu}$ ig $_{c s} \overline{\mathbf{c}} \gamma_{\mu}\left(1-\gamma_{5}\right) s W^{\mu}$

Remember，you only count external particles！
You can＇t see their phases！
all 4 phases in $\mathrm{g}_{\mathrm{ij}}$ can be absorbed by adjusting s，c，d，u and W phases

## Kobayashi－Maskawa Theory

Not so if we have 3 generations．
$\mathrm{g}_{\mathrm{ud},} g_{u s,} g_{u b}$
$\mathrm{g}_{\mathrm{cd},} g_{c s}, g_{c b}$
$\mathrm{g}_{\mathrm{td}}, g_{t s,} g_{t b}$

|  |  |  |  |
| :---: | :---: | :---: | :---: |
| \％ | Cu | Cr | $c$ |
| 11 | 001 |  | $\sigma$ |
|  | \％ 3 | 朴 |  |
|  |  | $v_{W}$ | $v_{v}$ |
| ， |  | $\xrightarrow{\text {（ }}$ | $\begin{aligned} & \boldsymbol{x} \\ & 827 \end{aligned}$ |

$$
\begin{array}{ll}
u, \mathrm{c}, \mathrm{t} & 9 \text { coupling constants } \\
\mathrm{d}, \mathrm{~s}, \mathrm{~b} & 7 \text { fields } \\
\mathrm{W} &
\end{array}
$$

One phase becomes an observable

## Kobayashi－Maskawa Theory


$\overline{s d}=K^{0} \quad s \bar{d}=\bar{K}^{0}$
K Meson
$\frac{\Gamma\left(K^{0} \rightarrow \pi^{+} \pi^{-}\right)-\Gamma\left(\bar{K}^{0} \rightarrow \pi^{+} \pi^{-}\right)}{\Gamma\left(K^{0} \rightarrow \pi^{+} \pi^{-}\right)+\Gamma\left(\bar{K}^{0} \rightarrow \pi^{+} \pi^{-}\right)}=2 \times 10^{-3}$
It requires three generations of quarks

The reason K meson CP violation is small is that it involves only $1^{\text {st }}$ and $2^{\text {nd }}$ generations

$$
\begin{gathered}
\text { Tiny CP Violation } \\
\text { sd }=\mathrm{K}^{0} \mathrm{~s} \bar{d}=\overline{\mathrm{K}}^{0} \\
\Gamma\left(K^{0} \rightarrow \pi^{+} \pi^{-}\right) \neq \Gamma\left(\bar{K}^{0} \rightarrow \pi^{+} \pi^{-}\right) \text {Cronin Fitch } \\
\frac{\Gamma\left(K^{0} \rightarrow \pi^{+} \pi^{-}\right)-\Gamma\left(\bar{K}^{0} \rightarrow \pi^{+} \pi^{-}\right)}{\Gamma\left(K^{0} \rightarrow \pi^{+} \pi^{-}\right)+\Gamma\left(\bar{K}^{0} \rightarrow \pi^{+} \pi^{-}\right)}=2 \times 10^{-3}
\end{gathered}
$$

## My prediction 1980

K Meson

$$
\overline{s d}=K^{0} \quad s \bar{d}=\bar{K}^{0}
$$

$\frac{\Gamma\left(K^{0} \rightarrow \pi^{+} \pi^{-}\right)-\Gamma\left(\bar{K}^{0} \rightarrow \pi^{+} \pi^{-}\right)}{\Gamma\left(K^{0} \rightarrow \pi^{+} \pi^{-}\right)+\Gamma\left(\bar{K}^{0} \rightarrow \pi^{+} \pi^{-}\right)}=2 \times 10^{-3}$

B Meson


$$
\overline{\mathrm{b}} \mathrm{~d}=\mathrm{B}^{0} \quad \mathrm{~b} \overline{\mathrm{~d}}=\overline{\mathrm{B}}^{0}
$$

$$
\frac{\Gamma\left(B^{0} \rightarrow \psi K_{S}\right)-\Gamma\left(\bar{B}^{0} \rightarrow \psi K_{S}\right)}{\Gamma\left(n^{0}\right.}=0.7
$$

$$
\Gamma\left(B^{0} \rightarrow \psi K_{S}\right)+\Gamma\left(\bar{B}^{0} \rightarrow \psi K_{S}\right)=0.1
$$

## METHOD TO OBSERVE PHASE



$$
\left|\bar{K}_{0}\right\rangle=\frac{1}{\sqrt{2}}\left(\left(K_{s}\right\rangle-\left|K_{L}\right\rangle\right) \quad\left|K_{0}\right\rangle=\frac{1}{\sqrt{2}}\left(\left(K_{s}\right\rangle+\left|K_{L}\right\rangle\right)
$$



Particle to antiparticle transition must be found



$$
e^{i \arg \left(g_{t b} g_{t d}^{*}\right)}
$$

## Theory


$e^{i \arg \left(g_{t b} g_{t d}^{*}\right)}$

$$
\frac{\Gamma\left(B^{0} \rightarrow \psi K_{S}\right)-\Gamma\left(\bar{B}^{0} \rightarrow \psi K_{S}\right)}{\Gamma\left(B^{0} \rightarrow \psi K_{S}\right)+\Gamma\left(\bar{B}^{0} \rightarrow \psi K_{S}\right)}=0.7
$$



All you have to do:


## What is so difficult?

B meson has not been discovered
$e^{+}+e^{-} \rightarrow B^{0}+\bar{B}^{0}$
Simple computation impied B meson lifetime to be 0.001 ps
$10 \%$ asymmetry, if B meson lifetime is at least 1 ps $B^{0} \rightarrow \psi K_{S}$ is very rare. Once every $10^{4} \mathrm{~B}^{0}$ decays

To detect $10 \%$ asymmetry, we need 1000 times more luminosity than any accerlerator that existed at that time

Experimentalists got suddenly interested after the discovery of B-anti B mixing
But, there was a problem!


Impossible at symmetric collider

B decays in $10^{-12} \mathrm{sec}$.
Light travels only 3 mm during that time.
B travels only 0.02 mm before it decays.

## Oddone's idea

Build an asymmetric collider

## $9 \mathrm{GeV}+3 \mathrm{GeV}$ asymmetric collider

$200 \mu \mathrm{~m}$ spaceial resolution



# KEK machine experts said asymmetric collider is impossible the beams will blow up 

1994
SLAC started building it in January KEK in April beginning of 7 years marathon

## I was a KEK LCPAC member

# Style of building machines at SLAC and at KEK 

 is different
## SLAC built an acelerator on a parking lot and won 2 Nobel Prizes



# The only goal at SLAC was to discover large CPV first! 

KEK's goal not only to discover CPV but to build a beautiful machine



# Doris gale prifitearge cossing 



1 year loss come out last!
"How do you know that
Finite angle crossing will work?"

## "OK according to our simulation!"

"Can you simulate the failure at Doris?"
"I don't know, I don't know their parameters!"

Why don' you hop on a plane and find out!

PEPII started January, 1994 and KEKB in April, 1994

|  |  |  |
| :--- | :--- | :--- |
| $7 / 23 / 98$ | First collision | PEPII |
| $1 / 29 / 99$ | First collision | KEKB |
| $2 / 8 / 99$ | $5.2 \times 10^{32}$ | PEPII |
| $3 / 26 / 99$ | $1.2 \times 10^{31}$ | KEKB |
| $5 / 26 / 99$ | Babar commissioned | PEPII |
| $6 / 1 / 99$ | Belle commissioned | KEKB |
| $11 / 11 / 99$ | $8 \mathrm{~B} \rightarrow \psi \mathrm{~K}_{\mathrm{S}}$ events | PEPII |
| $11 / 11 / 99$ | $2 \mathrm{~B} \rightarrow \psi \mathrm{~K}_{\mathrm{S}}$ events | KEKB |



## The discovery of the large CPV in $B \rightarrow \psi K_{S}$

$$
\begin{array}{ll}
\text { July, 2000 ICHEP Osaka } & \\
\sin 2 \phi_{1}=0.45 \pm 0.44(\text { stat }) \pm 0.09(\text { syst }) & \text { Belle } \\
\sin 2 \phi_{1}=0.12 \pm 0.37(\text { stat }) \pm 0.09(\text { syst }) & \text { BaBar } \\
\text { July, } 2001 \text { Lepton Photon } & \\
\sin 2 \phi_{1}=0.99 \pm 0.14(\text { stat }) \pm 0.06(\text { syst }) & \text { Belle } \\
\sin 2 \phi_{1}=0.59 \pm 0.14(\text { stat }) \pm 0.05(\text { syst }) & \text { Babar }
\end{array}
$$

KEKB team knew what they were doing!

## What would have happened If God did not like KEKB

## If SLAC's value was 0.99

2000
$\sin 2 \phi_{1}=0.99 \pm 0.37($ stat $) \pm 0.09($ syst $)$
$\sin 2 \phi_{1}=0.99 \pm 0.25($ stat $) \pm 0.09($ syst $) \quad$ with double statistics in 6 months

They would have announced the discovery before Lepton Photon

God did not give SLAC a favorable dice

# This proves the validity of KM theory 

## Does not explain the baryon asymmetry

New CPV is needed

# The challenge of the next generation <br> My guarantee 

Emergence of the new CP violation
Why we exist?

