ALLANDAN AL

Symmetry Breaking in Hot and Dense QCD

Kenji Fukushima

Yukawa Institute for Theoretical Physics Kyoto University

Symmetry-related Phenomena in QCD des Allendes (Nambu, Jona-Lasinio, Goldstone, Hatsuda, Kunihiro...) □ Symmetry of QCD in the chiral limit ($m_a = 0$) \Box Chiral phase transition at high *T* and/or μ **Center Symmetry** (Polyakov, Susskind, Svetitsky, Yaffe...) □ Symmetry of QCD in the quench limit $(1/m_a = 0)$ \Box Deconfinement phase transition at high T and/or μ

Parity (P) and Charge-Parity (CP) Symmetry
 Explicit breaking of CP – "strong CP problem"
 Topological excitations at high T and/or µ (Khazeev, Pisarski, McLerran...)

Energy Scales

- Typical QCD energy scale Λ_{QCD} ~ 200MeV
 Energy scales in the strong interactions
 - \Box Temperature $T \sim Z$
 - □ Baryon density –
 - □ Nucleon mass –
 - □ Magnetic field –

$$F \sim \Lambda_{\rm QCD} \sim 10^{12} \,\rm K$$

$$\rho_{\rm B} \sim \Lambda^{3} \sim \rm fm^{-3}$$

$$M_{N} \sim N_{c} \Lambda_{\rm QCD} \sim \rm GeV$$

$$eB \sim \Lambda_{\rm QCD}^{2} (B \sim 10^{18} \,\rm Gauss)$$

QCD Physics *Confinement Chiral Symmetry Breaking Quantum Anomaly*

c.f. Quark mass – $m_{ud} < 5 \,\mathrm{MeV}$

Phase Diagram of QCD

alignal align

February 16 2010 at Kyoto-GCOE

From a review by Fukushima-Hatsuda

Minimal Phase Diagram

Chiral Phase Transition (m_q~0) Constituent Quarks

Deconfinement Transition (1/m_q~0) Inter- (heavy) Quark Potential

 $\langle \operatorname{tr} L^{\dagger}(r) \operatorname{tr} L(0) \rangle \sim \exp\left[-V(r)/T\right]$

Confined Phase $V(r) \sim \sigma r$ decays exponentially Deconfined Phase $V(r) \sim \left(e^{-mr}/r\right)^2$ goes to a finite number $\left\langle \operatorname{tr} L^{\dagger}(r) \operatorname{tr} L(0) \right\rangle \rightarrow \left| \left\langle \operatorname{tr} L \right\rangle \right|^2$

Analogy to Spin Systems

Spin SystemOrderedDisordered $\langle s \rangle$ $\neq 0$ = 0 $\langle s(r)s(0) \rangle$ $\rightarrow |\langle s \rangle|^2$ $\rightarrow \exp[-r/\xi]$

Polyakov LoopDisorderedOrdered $\langle \operatorname{tr} L \rangle$ $\neq 0$ = 0 $\langle \operatorname{tr} L^{\dagger}(r) \operatorname{tr} L(0) \rangle$ $\rightarrow |\langle \operatorname{tr} L \rangle|^2$ $\rightarrow \exp[-r/\xi]$

Underlying Symmetry = Center of the Gauge Group = Z_{Nc} Symmetry (Z_3 in QCD)

Two Transitions in terms of M_{q}

area arras arras arras arras arras ar

Columbia Plot Lattice QCD group at Columbia U. de Forcrand, Philipsen

Two Transitions in terms of T

ĦŊĿĊĿĔŔŊĿĊĿĔŔŊĿĊĿĔŔŊĿĊĿĔŔŊĿĔĿĔŔŊĿĔŔŊĿĊĿĔŔŊĿĊĿĔŔŊĿĊĿĔŔŊĿŔĿĔŔŊĿŔĿĔŔŊĿŔĿĔŔŊĿ

	Low T	High T
$m_q = \infty$	Center Symmetric	Center Broken
Deconfin	(Disordered)	(Ordered)
	QCD Phase Transition	
$m_q = 0$	Chiral Broken	Chiral Symmetric
Chiral	(Ordered)	(Disordered)

Two Order Parameters and Model Study Polyakov-loop coupled chiral effective models

February 16 2010 at Kyoto-GCOE

Model Approach to Thermodynamics

Wambach-Schaefer-Wagner (2009)

0.8 0.6 p/p_{SB} QM PQM log 0.4 PQM pol PQM Fuku 0.2 p4 asqtad 0 1.5 2 0.5 2.5 3 T/T_{χ}

Pressure in unit of the Stefan-Boltzmann counts the number of liberated degrees of freedom (quarks and gluons) Trace of the energy-momentum tensor measures the interaction strength (deviation from free massless gas)

Triple-Point-Like Region

Phase Diagram from PNJL Model

Experimental Efforts Relativistic Heavy-Ion Collider (RHIC)

February 16 2010 at Kyoto-GCOE

Google map

Relativistic Heavy-Ion Collision

Picture by T.D. Lee

How Much Energy?

ANDER AND AND AND AND AND AND AND

Gold-Gold (Au) Collision Top energy per *N*-*N* collision $\sim 200 \text{GeV} \quad \gamma \sim 100$

Comparable to the kinetic energy when two mosquitoes collide!

Not bulls...

February 16 2010 at Kyoto-GCOE

Future Projects

February 16 2010 at Kyoto-GCOE

T

Large Hadron Collider – CERN Relativistic Heavy-Ion Collider – BNL Nuclotron-based Ion Collider Facility – JINR Facility for Antiproton and Ion Research – GSI

μ

Topological *P* and *CP* Violation leograficado de los de como de **Gauge Action** □ Ordinary Action of Yang-Mills Theories $F_{\mu\nu}F^{\mu\nu} = 2F_{0i}F^{0i} + F_{ii}F^{ij}$ **Even** w.r.t. spatial and temporal indices \Box Topological Contribution \mathcal{P} - and $\mathcal{C}\mathcal{P}$ - odd terms $F_{\mu\nu}\tilde{F}^{\mu\nu} = 2F_{01}F^{23} + 2F_{02}F^{31} + 2F_{03}F^{12}$ **Odd** w.r.t. spatial and temporal indices Parallel *E* and *B* B

$$F_{\mu\nu}\widetilde{F}^{\mu\nu} = 2 \boldsymbol{E} \cdot \boldsymbol{B}$$

θ-Vacuum and Strong CP Problem Topological Excitations and θ-vacuum Fadeev-Jackiw-Rebbi

Charge Asymmetry

ANDER ANDER ANDER ANDER ANDE ANDER ANDER ANDER ANDER ANDER ANDER ANDER ANDER ANDER

Anomaly Relations

EN VEREN V

Induced N₅ by Non-Abelian Topological Effects

$$\frac{dN_5}{dt} = -\frac{g^2 N_f}{8\pi^2} \int d^3 x \operatorname{tr} F_{\mu\nu} \widetilde{F}^{\mu\nu} \qquad \text{Exact Anomaly Relation}$$

Introduce μ_5 to describe induced N_5

Induced J by the presence of N₅ and B

Metlitski-Zhitnitsky (2005) Fukushima-Kharzeev-Warringa (2008)

Kharzeev-McLerran-Warringa (2007) Fukushura-Kharzeev-Warringa (2008)

Observable

Measured Multiplicity

 $\frac{\mathrm{d}N_{\pm}}{\mathrm{d}\phi} \propto 1 + 2v_{1\pm}\cos(\Delta\phi) + 2a_{\pm}\sin(\Delta\phi) + 2v_{2\pm}\cos(2\Delta\phi) + \cdots$

- ϕ : Azimuthal angle
- V_1 : Directed flow
- V_2 : Elliptic flow

 $a \sim J$

Experimental Data

Observable (fluctuation measurement)

$$\langle\!\langle \cos(\Delta\phi_{\alpha} + \Delta\phi_{\beta}) \rangle\!\rangle \equiv \left\langle\!\langle \frac{1}{N_{\alpha}N_{\beta}} \sum_{i=1}^{N_{\alpha}} \sum_{j=1}^{N_{\beta}} \cos(\Delta\phi_{\alpha,i} + \Delta\phi_{\beta,j}) \right\rangle\!\rangle = \left\langle\!\langle \cos\Delta\phi_{\alpha}\cos\Delta\phi_{\beta} \rangle\!\rangle - \left\langle\!\langle \sin\Delta\phi_{\alpha}\sin\Delta\phi_{\beta} \rangle\!\right\rangle = \left(\left\langle\!\langle v_{1,\alpha}v_{1,\beta} \rangle\!\rangle + B_{\alpha\beta}^{\mathrm{in}}\right) - \left(\left\langle\!\langle a_{\alpha}a_{\beta} \rangle\!\rangle + B_{\alpha\beta}^{\mathrm{out}}\right). \right)$$

Electric-current Susceptibility Charge Asymmetry Measurement

$$\sim \langle J_L^2 - J_T^2 \rangle = \langle J_L \rangle^2 + (\chi_L - \chi_T)$$
$$\chi_L - \chi_T = VT N_c \sum_f \frac{q_f^2 |q_f B|}{(2\pi)^2}$$

Constrained by Anomaly

Fukushima-Kharzeev-Warringa (2009)

Summary

- Many theoretical and experimental activities toward phase structure of dense QCD.
 - □ Triple-point-like region involving Quarkyonic Matter
 - More experimental data coming from various facilities all over the world
- The idea of the Chiral Magnetic Effect has opened a new research field in hot and dense QCD.
 - Detailed information on topological fluctuations
 - $\square \text{ Topological } \mathcal{P}\text{- and } \mathcal{CP}\text{-odd effects found in experiments}$