Precision Frontiers with Optically Controlled Neutrons

Hirohiko M. SHIMIZU

Neutron Science Division Institute of Material Structure Science

KEK

hirohiko.shimizu@kek.jp

Date(2010/02/16) by(H.M.Shimizu) Title(Precision Frontiers with Optically Controlled Neutrons) Conf(Kyoto Univ. GCOE Symposium) At(Kyoto)

0. Introduction

Neutron Sources

Slow neutron beam is attracting scientists' attention as its sensitivity to light elements, dynamics and magnetism. However, it is less commonly used than X-rays. One of the reasons is that its low luminosity.

Date(2010/02/16) by(H.M.Shimizu) Title(Precision Frontiers with Optically Controlled Neutrons) Conf(Kyoto Univ. GCOE Symposium) At(Kyoto)

3

(Analyzing Capability)=(Source Power)×('Efficacy')

deceleration, optics, detector, sample environment, signal processing, analysis algorithm, theoretical model, ... etc.

innovations \rightarrow improve 'efficacy'

Function of Neutron Optics

Beam Transport

Beam Delivery to Remote Place

Neutron Guide

Phase Volume Shaping

Beam Definition to Sample Position

Beam Collimation Beam Focus

Increase of 'Efficacy'

Neutron Science (Interdisciplinary Playground)

Material Science

Diffraction $\lambda = 0.1 - 10$ nm

Spectroscopy ΔE<100meV t>10⁻¹³s

Industry

Radiography

Residual Stress

Neutron Optics

Optics

Detectors

Signal Processing

Neutron Optics (device-level achievements)

Date(2010/02/16) by(H.M.Shimizu) Title(Precision Frontiers with Optically Controlled Neutrons) Conf(Kyoto Univ. GCOE Symposium) At(Kyoto)

10

1. Fundamental Physics

probing new physics through quantum loops

Date(2010/02/16) by(H.M.Shimizu) Title(Precision Frontiers with Optically Controlled Neutrons) Conf(Kyoto Univ. GCOE Symposium) At(Kyoto)

page

11

Neutron

Electric Dipole Moment

TeV→EDM

Measurement Procedure

search for the phase change when the electric field is reversed

ET=10⁶ s kV/cm E=10⁴ V/cm, T=100s

ET=10⁶ s kV/cm E=10⁹ V/cm, T=1ms

Confined Ultracold Neutron Spin Precession Freq.

COR OF CONCEPTION CLI Diffraction in Single 2dnE = 6×10⁻²² eV

Statistics Systematics

larger storage volume smaller storage volume

Neutron Fundamental Physics

TRIUMF: He-II UCN Source UCN-EDM Lifetime, Decay Correlations

> NIST: Lifetime, Decay Correlations EDM in crystal field

LANL: D₂ UCN Source UCN Decay Correlations R&D for SNS-EDM

SNS:

Hadronic-weak Interacton Lifetime, Decay Correlations UCN-EDM(measurement in production volume) PSI: D₂ UCN Source UCN-EDM Lifetime, Decay Correlations

ILL: Turbine UCN Source EDM Lifetime Decay Correlations He-II UCN Source UCN-EDM (measurement in production volume)

existing UCN facilities - ILL / LANL / Mainz $I \sim 10^1$ UCN facilities in construction - PSI / SNS / TUM ~ >10³ UCN facilities planned - J-PARC / TRIUMF / NCSU

ILL-UCN (~10UCN/cm³) gravity+mechanical turbine

Date(2010/02/16) by(H.M.Shimizu) Title(Precision Frontiers with Optically Controlled Neutrons) Conf(Kyoto Univ. GCOE Symposium) At(Kyoto)

ILL EDM Measurement

Superthermal UCN Production

Date(2010/02/16) by(H.M.Shimizu) Title(Precision Frontiers with Optically Controlled Neutrons) Conf(Kyoto Univ. GCOE Symposium) At(Kyoto)

26

Superthermal UCN Converters

C.-Y.Liu, Dissertation, Princeton Univ. (2002)

converter	He-II	Solid ortho-D ₂	α-0 2
interaction	phonon	phonon	magnon?
converter temperature	0.7K	5K	2K
optimal neutron temperature	9K	29K	12K
production rate (30K neutrons)	90×10 ⁻¹¹ Φ₀ cm ⁻³ s ⁻¹	1300×10 ⁻¹¹ Φ₀ cm ⁻³ s ⁻¹	~1000×10 ⁻¹¹ Φ₀ cm ⁻³ s ⁻¹
ideal lifetime (no wall loss, no upscattering)	886 s	146 ms	489 ms

low loss large production rate

 $\rho_{\text{UCN}}=10^{-11}\Phi_0$

(thermal moderator)

Measurement Procedure

Date(2010/02/16) by(H.M.Shimizu) Title(Precision Frontiers with Optically Controlled Neutrons) Conf(Kyoto Univ. GCOE Symposium) At(Kyoto)

36

UCN Sources (Accelerator+Spallation)

Title(Precision Frontiers with Optically Controlled Neutrons) Conf(Kyoto Univ. GCOE Symposium) At(Kyoto)

37

Possible Location of UCN Source

JEPARO

Neutrino <

Materials and Life Science Facility

50 GeV

Linac

Hadron Exp. Facility

Proton Beam Availability arXiv:0907.0515[physics.ins-det

Solid D₂ Converter

Experimental Errors

 $\rho_0 = 6200 \text{ cm}^{-3}$

Date(2010/02/16) by(H.M.Shimizu) Title(Precision Frontiers with Optically Controlled -Conf(Kyoto Univ. GCOE Symposium) At(Kyoto)

42

UCN Rebuncher

Date(2010/02/16) by(H.M.Shimizu) Title(Precision Frontiers with Optically Controlled Neutrons) Conf(Kyoto Univ. GCOE Symposium) At(Kyoto)

44

UCN Rebuncher

Experimental Errors

 $\rho_0 = 6200 \text{ cm}^{-3}$

Date(2010/02/16) by(H.M.Shimizu) Title(Precision Frontiers with Optically Controlled Conf(Kyoto Univ. GCOE Symposium) At(Kyoto)

49 Neutron Optics

J-PARC P33: J-PARC UCN for |dn|<10-27 e cm

for the study of new physics with the improved experimental accuracy by the optically controlled transport of pulsed ultracold neutrons to the measurement cell.

50 Neutron Optics an

UCN Condenser

Pulsed Source+Rebuncher+Juggler

UCN Condenser

Pulsed Source+Rebuncher+Juggler

Title(Precision Frontiers with Optically Controlled Neutrons) Conf(Kyoto Univ. GCOE Symposium) At(Kyoto)

53

Experimental Errors po = 93000 cm⁻³

Date(2010/02/16) by(H.M.Shimizu) Title(Precision Frontiers with Optically Controlled Conf(Kyoto Univ. GCOE Symposium) At(Kyoto)

page

54

Experimental Errors $\rho_0 = 620000 \text{ cm}^{-3}$

Date(2010/02/16) by(H.M.Shimizu) Title(Precision Frontiers with Optically Controlled Conf(Kyoto Univ. GCOE Symposium) At(Kyoto)

Magnetometry

Hg magnetometer	100fT
Cs magnetometer	3fT
³ He magnetometer	1fT
SQUID magnetometer	80aT/Hz ^{1/2} requires low temperature

Rb NMOR magnetometer (Nonlinear Magneto-Optical Rotation)

Experimental Error po = 620000 cm⁻³

5000h 1000cm³ T=150s systematic error using ILL achievement 2 10⁻²⁷ ∆d_n [e cm] 10⁻² systematic error statistical error 9 10⁻² using PSI goal 8 10-28 7 10⁻²⁸ 6 10⁻²⁸ **Rb NMOR goal** 5 10⁻²⁸ 4 10⁻²⁸ 4.5×10⁻²⁸ e cm 3 10⁻²⁸ 8 10 12 6 14 L [cm]

cell size

Date(2010/02/16) by(H.M.Shimizu) Title(Precision Frontiers with Optically Controlle Conf(Kyoto Univ. GCOE Symposium) At(Kyoto)

57 Neutron Optics

Electric Dipole Moment

Neutron Fundamental Physics

medium range force search

neutron charge

subatomic equivalence principle

n-nbar oscillation

Japan Proton Accelerator Research Complex

I-PA

Neutrino <

Materials and Life Science Facility

50 GeV

JAEA)

Linac

Hadron Exp. Facility

ММ

Supermirror Benders in Assembly

Nov. 2008

oru TAKET

Takashi INO

Polarization Branch

Experiment Mirror

Cross-section Channel Bender Length **Bending Angle**

Beta decay Magnetic Supermirror(2.8Qc) Configuration Polygonal approximation $12unit \times 0.262 \text{ deg.} (R=82m)$ 40mm × 100mm 4ch $4.5 \text{ m} (375 \text{ mm} \times 6 \times 2)$ 3.14 deg.

Unpolarized-beam Branch

Scattering

Mirrors Configuration Curvature Cross-section Channel Bender Length **Bending Angle**

Experiment

Supermirror (3Qc) Real Curve 100m 50mm × 40mm 5ch $4.0 \text{ m} (2.0 \text{m} \times 2)$ 2.58 deg.

Low Divergence Branch

Tamaki YOSHIOKA

Experiment Mirrors Configuration **Critical Angle Bending Angle**

Interferometer Supermirror (3Qc)

2 mirrors 0.95 deg. 3.85 deg.

63

Conf(Kyoto Univ. GCOE Symposium) At(Kyoto)

64

J-PARC BL05 Neutron Optics and Physics (NOP)

On-going Researches at BL05

Demonstration

Gravity

"hierarchy problem": Mgut~10²⁴eV ⇔ Msu(2)×U(1)~10¹¹eV

Phenomena out of the standard model is existing.

Neutrino Oscillation, Dark Energy, Dark Matter

Super-K, SNO, KamLAND WMAP

Gravity medium-range force search

 $V(r) = -(GM/r)(1 + \alpha e^{-r/\lambda})$

Date(2010/02/16) by(H.M.Shimizu) Title(Precision Frontiers with Optically Controlled Neutrons) Conf(Kyoto Univ. GCOE Symposium) At(Kyoto)

n Captics and Physics 70

70

Gravity

3-dim. Gravity

$$F_3(r) = G_3 \frac{m_1 m_2}{r^2}$$

N-dim. Gravity

$$F_N(r) = G_N \frac{m_1 m_2}{r^{N-1}}$$

continuity at r=R*

$$\frac{G_3}{R^{*2}} = \frac{G_N}{R^{*N-1}} \implies G_3 = \frac{G_N}{R^{*N-3}}$$

If R* is longer than the Planck's length, G₃ becomes smaller.

Parametrization: V(r)=-(GM/r)(1+ $\alpha e^{-r/\lambda}$)

KK-graviton, which is emitted off our brane with the momentum $(q_1, q_2, ..., q_n)$ along the extradimension, looks having the mass |q|.

Date(2010/02/16) by(H.M.Shimizu) Title(Precision Frontiers with Optically Controlled Neutrons) Conf(Kyoto Univ. GCOE Symposium) At(Kyoto)

Torsion Balance

Hoyle et al. PRD70, 042004 (2004) Karper et al. PRL98, 021101 (2007)

Date(2010/02/16) by(H.M.Shimizu) Title(Precision Frontiers with Optically Controlled Neutrons) Conf(Kyoto Univ. GCOE Symposium) At(Kyoto)

Atomic Force Microscope

R.S.Decca et al., Phys. Rev. Lett. 94 (2005) 240401

Gravity

Van der Waals force is dominant closer than 10µm

electric polarizability

$$U = -\frac{3\hbar c(\alpha)}{8\pi r^4}$$

atoms $\alpha \sim 10^{15} \, \text{fm}^3$

neutrons $\alpha \sim 10^{-3} \, \text{fm}^{3'}$

 $I(J^{P}) = \frac{1}{2} \left(\frac{1}{2}^{+}\right)$ (ref. PDG2008) mass m=939.565360±0.000081 MeV mean life $\tau = 885.7 \pm 0.8 \text{ s}$ magnetic dipole moment μ =(-1.91304273±0.0000045) μ N electric dipole moment |d|<2.9×10⁻²⁶ e cm (90%CL) mean square charge radius electric polarizability $\alpha = (11.6 \pm 1.5) \times 10^{-4} \text{ fm}^3$ $\beta = (3.7 \pm 2.0) \times 10^{-4} \text{ fm}^3$ charge q=(-0.4±1.1)×10⁻²¹ e mean time for nn transition τnn[free]>8.6×107 s (90%CL) $\tau_{n\bar{n}}$ [bound]>1.3×10⁸ s (90%CL) mean time for nn' oscillation $\tau_{nn'}$ >103 s (95%CL) decay modes n→pe⁻*v*_e 100% $\lambda = q_A/q_V = -1.2695 \pm 0.0029$ e⁻ asymmetry parameter A=-0.1173±0.0013 $\overline{\nu}_{e}$ asymmetry parameter B=0.9807±0.0030 proton asymmetry parameter C=-0.2377±0.0010±0.0024 $e-\overline{\nu}_e$ angular correlation coefficient a=-0.103±0.004 phase of g_A relative to g_V $\phi_{AV}=(180.06\pm0.07)^{\circ}$ triple correlation coefficient $D=(-4\pm6)\times10^{-4}$ $n \rightarrow pe^{-} \overline{\nu_e} \gamma$ (3.13±0.35)×10⁻³ (35-100keV) $n \rightarrow p \nu_e \overline{\nu_e} < 8 \times 10^{-27}$ (68%CL)

$$\frac{d\sigma_G}{d\Omega} = \alpha^2 \left(\frac{Gm_n M}{4}\right)^2 \left|\frac{1}{\frac{1}{m_n c^2} + 8E_n \sin^2 \frac{\theta}{2}}\right|$$

E_n=2meV

Beam size: 4cm×4cm Collimation: 1.7mrad×1.7mrad Target: ⁴⁰Ar 0.1atm, 10cm Detector efficiency: 0.4

Date(2010/02/16) by(H.M.Shimizu) Title(Precision Frontiers with Optically Controlled Neutrons) Conf(Kyoto Univ. GCOE Symposium) At(Kyoto)

Gravity

Date(2010/02/16) by(H.M.Shimizu) Title(Precision Frontiers with Optically Controlled Neutrons) Conf(Kyoto Univ. GCOE Symposium) At(Kyoto)

2. applications to material researches

Date(2010/02/16) by(H.M.Shimizu) Title(Precision Frontiers with Optically Controlled Neutrons) Conf(Kyoto Univ. GCOE Symposium) At(Kyoto)

77

 $k', E' \qquad w = E' - E$ $k, E \qquad k \qquad q = k' - k$

the nm-scale structure and slow dynamics

of light elements

with small chemical change.

(Analyzing Capability)=(Source Power)×('Efficacy')

deceleration, optics, detector, sample environment, signal processing, analysis algorithm, theoretical model, ... etc.

innovations → **improve** 'efficacy'

Date(2010/02/16) by(H.M.Shimizu) Title(Precision Frontiers with Optically Controlled Neutrons) Conf(Kyoto Univ. GCOE Symposium) At(Kyoto)

79

Focusing \ 'Efficacy'

Concentrating Neutron

increase spatial density accepting large beam divergence

Kumakov Lens Converging Guide Mosaic Mirror Mosaic Crystal Fine Focus Curved Mirror Refractive Lens

Date(2009/08/24-26) by(H.M.Shimizu) Conf(1st Special Summer Lectures on Neutron Physics, Optics and Precision Measurement At(Daejeon)

bade

Prompt γ-ray Analysis

element/isotope analysis

Date(2009/08/24-26) by(H.M.Shimizu) Conf(1st Special Summer Lectures on Neutron Physics, Optics and Precision Measurement) At(Daejeon)

Powder Diffraction

sacrificing q-resolution

Date(2009/08/24-26) by(H.M.Shimizu) Conf(1st Special Summer Lectures on Neutron Physics, Optics and Precision Measurement) At(Daejeon)

High Pressure Neutron Diffractometry

Date(2009/08/24-26) by(H.M.Shimizu) Conf(1st Special Summer Lectures on Neutron Physics, Optics and Precision Measurement) At(Daejeon)

83

Example: Small Angle Neutron Scattering

Focusing SANS

Focusing-Mirror High-Resolution SANS and Reflectometer (KWS-3)

Focusing-Lens SANS (NIST)

Focusing SANS with Quadrupole and Sextupole Magnetic Lens

Focusing options implemented at

accesible range expanded up to micrometers A JRR-3)

Date(2010/02/16) by(H.M.Shimizu) Title(Precision Frontiers with Optically Controlled Neutrons) Conf(Kyoto Univ. GCOE Symposium) At(Kyoto)

87

Extended Application to Pulsed Sources

Multiplet with Spin-flippers

Focusing for wide- λ

Applications at JRR-3

Magnetic Lenses for SANS

Ellipsoidal Supermirrors for mfSANS

Multichannel Focusing Guides

Title(Precision Frontiers with Optically Controlled Neutrons) Conf(Kyoto Univ. GCOE Symposium) At(Kyoto)

90

Neutron Spin Echo

measures momentum transfer and energy transfer for observation of slow dynamics

Imager Neutron Image Intensifier

made by Toshiba Corporation

Input window

Date(2010/02/16) by(H.M.Shimizu) Title(Precision Frontiers with Optically Controlled Neutrons) Conf(Kyoto Univ. GCOE Symposium) At(Kyoto)

MPGD (Micro Patterned Gaseous Detector)

μ-PIC (Kyoto Univ.)

Imager

GEM (KEK)

X-COORDINATE

Date(2010/02/16) by(H.M.Shimizu) Title(Precision Frontiers with Optically Controlled Neutrons) Conf(Kyoto Univ. GCOE Symposium) At(Kyoto)

93

93

Neutron Optics

Advances in neutron optics enhance the capability of neutron beam.

Newly Activated Window

Date(2010/02/16) by(H.M.Shimizu) Title(Precision Frontiers with Optically Controlled Neutrons) Conf(Kyoto Univ. GCOE Symposium) At(Kyoto)

Compact Neutron Source

more opportunities to incubate new ideas, pioneering works and epoch-making break-throughs for both of fundamental and material researchs

Compact Source at Kyoto

to be discussed on Feb. 19

Feb.19, 13:00-17:30

Room#525 Building #5 Faculty of Science, Kyoto Univ. http://www-nh.scphys.kyoto-u.ac.jp/QuantumBeam/

Date(2010/02/16) by(H.M.Shimizu) Title(Precision Frontiers with Optically Controlled Neutrons) Conf(Kyoto Univ. GCOE Symposium) At(Kyoto)

page 96 🖕

Date(2010/02/16) by(H.M.Shimizu) Title(Precision Frontiers with Optically Controlled Neutrons) Conf(Kyoto Univ. GCOE Symposium) At(Kyoto)

Neutron Science (Interdisciplinary Playground)

Material Science

Diffraction $\lambda = 0.1 - 10$ nm

Spectroscopy ΔE<100meV t>10⁻¹³s

Industry

Radiography

Residual Stress

Neutron Optics

Optics

Detectors

page

Signal Processing

Date(2010/02/16) by(H.M.Shimizu) Title(Precision Frontiers with Optically Controlled Neutrons) Conf(Kyoto Univ. GCOE Symposium) At(Kyoto)

