Behind the Scenes of High Temperature Superconductivity: Cuprates and Iron Pnictides

Yukawa Institute for Theoretical Physics

Takami Tohyama Eiji Kaneshita Takao Morinari

3d transition-metal compounds

Cuprate superconductors

1986 High-temperature superconductivity

T_c ~ 160K under pressure

Oxides, two-dimensionality \rightarrow superconductivity

Iron-pnictide superconductors

1																	18
1 H	2											13	14	15	16	17	2 He
3 Li	4 Be											5 B	6 C	7 N	8 0	9 F	10 Ne
11 Na	12 Mg	3	4	5	6	7	8	9	10	11	12	13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	40 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 	54 Xe
55 Cs	56 Ba	57~ 71	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
87 Fr	88 Ra	89~ 103	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110	111	112						

2008 Hosono's Group at TIT

T_c ~ 55K

Fe: typical magnetic metal \rightarrow superconductivity

Motivation

Similarity and difference between cuprate and iron-pnictide superconductors

Cuprates

- Ionic material
- doped Mott insulator

Iron pnictides

- band material
- spin-density wave (SDW)

Summary and perspectives

Crystal structure of high T_c cuprates

Cu²⁺ 3d⁹ S=1/2 hole on each x^2-y^2 orbital Strong local Coulomb interaction \rightarrow Mott insulator localized spin \rightarrow antiferromagnetic exchange interaction $J\sim$ 1400K Phase diagrams

Crystal structure of high T_c iron pnictides

LnFeAsO (1111)

LixFeAs (111) T_c ~ 33 K

Layered structures Fe-As layer Quasi-2D system

Fe/Co
As (Top)
As (Bottom)

Q=(π,0) "Stripe"order

Phase diagram of high-T_c iron pnictides

S. Nandi et al., PRL 104, 057006 (2010)

H. Chen et al., Europhys. Lett. 85, 17006 (2009)

Cuprates and iron pnictides

Similarity	Superconductivity ne	ext to magnetism
Difference	cuprates	iron pnictides
electronic structure	crystal-field, 3d ⁹ single band (x ² -y ²)	hybridization, 3d ⁶ multi band (five orbitals)
magnetism	Antiferro. insulator	Antiferro. metal
super- conductivity	carrier doping	carrier doping pressure
super- conductivity	d _{x2-y2} symmetry	sign-reversed or preserved s anisotropic s, d??
	approaches from ionic picture and doped Mott insulator	approaches from band picture and spin-density wave

Origin of the electron-hole asymmetry in cuprates

- low-energy effective model: t-J model
- Introduction of the second nearest-neighbour hopping t'

No change of spin configuration by *t*'

The magnitude of the selfenergy of this configuration is dependent of the sign of *t*'

Asymmetry of spin-spin correlation function

Exact results for a 20-site t-t'-J model

x: carrier density

Antiferromagnetic correlation survives for the electron carrier. T. T., PRB **70**, 174517 (2004)

Antiferromagnetic phase of iron pnictides

Mean-field calculation of the stripe AF state

Five-band model for the Fe square lattice

I TT

$$H = H_0 + H_I$$
$$H_0 = \sum_{\mathbf{k},\mu,\nu,\sigma} \left[\sum_{\Delta} t(\Delta_x, \Delta_y; \mu, \nu) e^{i\mathbf{k}\cdot\Delta} + \epsilon_{\mu}\delta_{\mu,\nu} \right] c^{\dagger}_{\mathbf{k}\mu\sigma} c_{\mathbf{k}\nu\sigma}$$

K. Kuroki et al., Phys. Rev. Lett. 101, 087004 (2008)

$$H_{I} = U \sum_{i,\mu} n_{i\mu\uparrow} n_{i\mu\downarrow} + \frac{2U - 5J}{4} \sum_{i,\mu\neq\nu,\sigma,\sigma'} n_{i\mu\sigma} n_{i\nu\sigma'} + J \sum_{i,\mu\neq\nu} (c^{\dagger}_{i\mu\uparrow} c_{i\nu\uparrow} c^{\dagger}_{i\mu\downarrow} c_{i\nu\downarrow} - \mathbf{S}_{i\mu} \cdot \mathbf{S}_{i\nu})$$

Striped AF order

TT

Order parameter

$$\langle n_{\mathbf{Q}\,\mu\nu\sigma} \rangle = \frac{1}{N} \sum_{\mathbf{k}} \langle c^{\dagger}_{\mathbf{k}+\mathbf{Q}\,\mu\sigma} c_{\mathbf{k}\,\nu\sigma} \rangle_{\mathbf{k}}$$

Fermi surfaces

Calculated optical conductivity (Interband transitions)

The AF state exhibits optical conductivity consistent with experiments. E. Kaneshita, T. Morinari, T.T., PRL **103**, 224519 (2009)

Spin excitation of CaFe₂As₂ Experiment

Para.

AFM

J. Zhao *et al*., Nat. Phys. **5**, 555 (2009)

Localized spin model

C. Lester et al., arXiv:0912.4134

Spin excitation for AF metal Theory

E. Kaneshita and T.T., arXiv:1002.2701 Five band + mean-field $\mathbf{Q}=(\pi,0)$ "Stripe"order Random phase approximation

"Nematic" electronic nanostructure seen in AF metal

STM for CaFe_{1.94}Co_{0.06}As₂

Charge response function E. Kaneshita and T.T., arXiv:1002.2701

charge modulation with 8 Fe-Fe distance

Charge fluctuations from residual Fermi surfaces

Summary

Number of band

Correlation strength

YBa₂Cu₃O_{6+x}

Perspective: Quantum oscillations

BaFe₂(As_{1-x}P_x)₂

H. Shishido *et al.*, PRL **104**, 057008 (2010)

- Multiple Fermi surfaces
- Divergence of the effective mass Similar to iron-pnictides?
- S. E. Sebastian *et al.*, arXiv:0910.2359 J. Singleton *et al.*, arXiv:0911.2745

Perspective for iron-pnictides

Dirac particles in band dispersions of AFM BaFe₂As₂

N. Harrison and S. E. Sebastian, arXiv:0910.4199

Real effect on transport properties or not?