Exotic clustering in light nuclear systems N. Itagaki Yukawa Institute for Theoretical Physics, Kyoto University

from astrophysical side, and experimentally confirmed afterwards

Microscopic Study of the Triple- α Reaction

A. S. Umar,¹ J. A. Maruhn,² N. Itagaki,³ and V. E. Oberacker¹

¹Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235, USA ²Institut für Theoretische Physik, Goethe-Universität, D-60438 Frankfurt am Main, Germany ³Department of Physics, University of Tokyo, Hongo, Tokyo 113-0033, Japan (Received 24 March 2010; published 27 May 2010)

FIG. 1: (Color online) Selected density profiles from TDHF time-evolution of the ⁴He+⁸Be head-on collision for initial Be orientation angle $\beta = 0^{\circ}$ (see small graphs in Fig. 2) using the SLy4 interaction. The initial energy is $E_{c.m.} = 2$ MeV. For T < 2500 fm/c the system vibrates about the linear chain configuration shown in the top pane, subsequently the system changes its mode to a bending configuration shown in the middle pane, and finally relaxes into a more compact configuration as shown in the bottom pane. Note that the region shown is only a part of the computational mesh.

FIG. 2: (Color online) Potential energy curves for the collision of the ${}^{4}\text{He} + {}^{8}\text{Be}$ system as a function of R for three initial alignments of the Be nucleus and at $E_{\text{c.m.}} = 2$ MeV.

FIG. 4: Time spent in the linear chain configuration as a function of the impact parameter b for the ⁴He+⁸Be system at $E_{\rm c.m.} = 2$ MeV and $\beta = 0^{\circ}$ alignment.

¹⁰Be

N. Itagaki and S. Okabe, Phys. Rev. C 61 044306 (2000)

1000個に及ぶ新RIの発見

RIビームファクトリーで得られる重イオン(1次ビーム)エネルギーは、あらゆる核種に ついてRIビーム発生に必要なエネルギー(核子あたり百メガ電子ボルト以上)を大幅に上 回ります。その結果、現在世界トップクラスの性能を誇る理研リングサイクロトロンの ビームをもってしても十数個程度しか発見できなかった新RIの種類が飛躍的に増大し、そ の数は、千個にも及ぶと予想されます。これらの新RIの性質を系統的かつ詳細に調べるこ とが、宇宙の元素合成のメカニズムの謎を解明する手掛かりとなります。更には、実験に 利用可能な強度が得られるRIの種類も大幅に増加し、原子核物理学の分野のみならず基礎 物理学の問題から生物・医学の分野にわたって新たなプローブを提供することもできます。

Physics of Neutron-rich nuclei

RI Beam Factory project (RIKEN)

How about in neutron-rich nuclei?

It becomes stable due to the glue effect of the neutrons?

Interactions (Skyme) and model space are ones for mean-field models

Force	E_B	$\pi^2 \delta^2$	$\pi^2 \pi'^2$	$\pi^2 \delta \pi'$	$\pi^2 \sigma \pi'$	$\pi^2 \delta \pi''$
SkI3	101.5	19.5	14.5	17.0	19.1	17.5
SkI4	100.8	19.9	15.7*	17.6	19.7	18.0
Sly6	100.6	18.9	15.4*	17.0	19.0	17.3
$\rm SkM^{*}$	115.0	17.5	16.4^{*}	16.9	19.7	17.0
Force	ß	$\pi^2 \delta^2$	$\pi^{2}\pi^{\prime 2}$	$\pi^2 \delta \pi'$	$\pi^2 \sigma \pi'$	$\pi^2 \delta \pi''$
	$\rho_{\rm g.s.}$	0.00	0.00	0.70	0.00	0.70
SK13	0.34	0.82	0.69	0.76	0.88	0.76
SkI4	0.33	0.80	0.68*	0.75	0.86	0.74
Sly6	0.32	0.81	0.68*	0.75	0.87	0.75
SkM^*	0.28	0.79	0.66*	0.73	0.85	0.73

K^π=1⁻

K^π=1⁺

16

K^π=0⁺

K^π=0⁺

K^π=2⁺

Stability against bending motion

Linear Chain Structure of Four- α Clusters in ¹⁶O

T. Ichikawa,¹ J. A. Maruhn,² N. Itagaki,¹ and S. Ohkubo^{3,4}

¹Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan
²Institut fuer Theoretische Physik, Universitaet Frankfurt, D-60438 Frankfurt, Germany
³Department of Applied Science and Environment, University of Kochi, Kochi 780-8515, Japan
⁴Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka 567-0047, Japan (Received 17 June 2011; published 9 September 2011)

We investigate the linear chain configurations of four- α clusters in ¹⁶O using a Skyrme cranked Hartree-Fock method and discuss the relationship between the stability of such states and angular momentum. We show the existence of a region of angular momentum (13–18 \hbar) where the linear chain configuration is stabilized. For the first time we demonstrate that stable exotic states with a large moment of inertia ($\hbar^2/2\Theta \sim 0.06-0.08$ MeV) can exist.

DOI: 10.1103/PhysRevLett.107.112501

PACS numbers: 21.60.Jz, 21.30.Fe, 21.60.Cs

Rod-Shaped Nucleus

We picture atomic nuclei as spherical globs of protons and neutrons, although they can also be egg-shaped. Now calculations published 9 September in *Physical Review Letters* show that an even more exotic shape is possible: a rapidly spinning nucleus can form into a linear chain of several small clusters of neutrons and protons. Such exotic nuclear states could play important intermediary roles in the

FIG. 5: Angular momentum as a function of rotational frequency ω for the Skyrme forces. The lines with solid symbols denote the calculated results for the rigid-body moment of inertia, while the open symbols denote the results for the cranking method.

FIG. 6. Calculated excitation energies of the four- α linear chain states with the SkI3 force versus the angular momentum. The dotted lines denote the corresponding cluster-decomposition threshold energies.

What is the key mechanism for the cluster-breaking?

Spin-orbit interaction is driving force of breaking α clusters and restoring the single particle motions of nucleons

Is there some control parameter in the cluster wave function to take into account the spin-orbit contribution?

²⁰Ne case

Cluster model – ¹⁶O+alpha model

Present model – ¹⁶O+quasi cluster

Four nucleons in the quasi cluster perform single particle motions around ¹⁶O

Simplified modeling of cluster-shell competition in ²⁰Ne and ²⁴Mg N. Itagaki, M. Ploszajczak, and J. Cseh, Phys. Rev. C **83** 014302 (2011).

Solid, Dotted, Dashed lines \rightarrow R = 0.5, 2.0, 4.0 fm

• ¹²C case

3alpha model $\Lambda = 0$ 2alpha+quasi cluster $\Lambda = finite$

 Λ is a good tool to prepare the α breaking configurations

However this is a control parameter introduced in the wave function and not an observable

After superposing Slater determinants with different Λ values, it is difficult to estimate the extent to which the α cluster is broken

We need to introduce an operator and calculate the expectation value of α breaking

What is the operator related to the α breaking?

 $(\boldsymbol{l}^*\boldsymbol{s})_i$ $\boldsymbol{\rangle}$ *i*=*protons*

one-body spin-orbit operator for the proton part

How about cluster-shell competition in neutron-rich nuclei?

We generate many Slater determinants with different configurations for the valence neutrons and superpose them **C**

Lifetime Measurement of the 2_1^+ State in ${}^{20}C$

M. Petri,^{1,*} P. Fallon,¹ A. O. Macchiavelli,¹ S. Paschalis,¹ K. Starosta,^{2,3,4} T. Baugher,^{3,4} D. Bazin,³ L. Cartegni,⁵ R. M. Clark,¹ H.L. Crawford,^{3,6} M. Cromaz,¹ A. Dewald,⁷ A. Gade,^{3,4} G.F. Grinyer,³ S. Gros,¹ M. Hackstein,⁷ H. B. Jeppesen,¹ I. Y. Lee,¹ S. McDaniel,^{3,4} D. Miller,^{3,4} M. M. Rajabali,⁵ A. Ratkiewicz,^{3,4} W. Rother,⁷ P. Voss,^{3,4} K. A. Walsh,^{3,4} D. Weisshaar,³ M. Wiedeking,⁸ and B. A. Brown⁴

¹Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA ²Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada ³National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, USA ⁴Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA ⁵Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA ⁶Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA ⁶Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA ⁶Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA ⁷Institut für Kernphysik der Universität zu Köln, D-50937 Köln, Germany ⁸Lawrence Livermore National Laboratory, Livermore, California 94551, USA (Received 21 January 2011; published 30 August 2011)

FIG. 3 (color online). $B(E2; 2_1^+ \rightarrow 0_{g.s.}^+)$ trend in even mass carbon isotopes for A = 16-20 including only statistical errors.

T. Hyodo, D. Jido / Progress in Particle and Nuclear Physics 67 (2012) 55-98

Fig. 15. Family of kaonic few-body states.

Fig. 16. Schematic structure of the \overline{KKN} quasi-bound state with the inter-hadron distances.

Summary

- Nuclear structure changes as a function of excitation energy
- Cluster structure appears around the decay threshold, and geometric configurations are stabilized in neutron-rich nuclei
- We can simultaneously discuss the clustershell competition in the ground state and appearance of cluster states in the excited states

Summary

- Nuclear structure changes as a function of excitation energy
- Cluster structure appears around the decay threshold, and geometric configurations are stabilized in neutron-rich nuclei
- We can simultaneously discuss the clustershell competition in the ground state and appearance of cluster states in the excited states

Summary

- Nuclear structure changes as a function of excitation energy
- Cluster structure appears around the decay threshold, and geometric configurations are stabilized in neutron-rich nuclei
- We can simultaneously discuss the clustershell competition in the ground state and appearance of cluster states in the excited states

The optimum values of the parameters R_1 and Λ for the carbon isotopes.

H. Masui and N. Itagaki, Phys. Rev. C 75 054309 (2007)

H. Masui and N. Itagaki, Phys. Rev. C 75 054309 (2007)

N. Itagaki, M. Ploszajczak, and J. Cseh, Phys. Rev. C 83 014302 (2011)

FIG. 1: The GCM calculations of yrast levels in ²⁰Ne for three different values of the strength of the spin-orbit interaction: $V_0 = 0,1000,2000$ MeV, are compared with the experimental data (Exp.). For more details, see the description in the text.

Give wave functions an initial boost factor with r=3fm, α =1fm Then do time-dependent calculation.

Result shows long-term return to ground state, but some oscillations before.

Figure 9: Time-dependent reaction of the chain state in 20 C to a slight bending-type excitation. Plotted is the $\Re(Q_{31})$ expectation value described in the text for an excitation of 0.04 MeV relative to the unperturbed chain-state energy.

FIG. 2: (Color online) Total nucleon density distribution calculated using the cranking method for (a) the initial wave function, (b) the ground state, (c) the quasi-stable state, and (d) the four- α linear chain state. The isolines correspond to multiples of 0.02 fm⁻³. We normalize the color to the density distribution at the maximum of each plot.

FIG. 4: Coefficient of the rotational energy $\hbar^2/2\Theta$ as a function of rotational frequency ω . The lines correspond to the different Skyrme forces as indicated.

FIG. 3: Coefficient of the rotational energy, $\hbar^2/2\Theta$, calculated using the cranking method versus the HF iterations with various rotational frequencies ω . The symbols (b), (c), and (d) correspond to the density distributions given in Fig. 2.

Single particle wave function of nucleons in quasi cluster (spin-up):

$$\psi_i = \left(\frac{2\nu}{\pi}\right)^{\frac{3}{4}} \exp\left[-\nu(\vec{r} - \vec{\zeta_i}/\sqrt{\nu})^2\right]$$

$$\vec{\zeta}/\sqrt{\nu} = R(\vec{e}_x + i\Lambda\vec{e}_y)$$

Quasi cluster is along x Spin direction is along z Momentum is along y

$$\psi_i = \left(\frac{2\nu}{\pi}\right)^{\frac{3}{4}} \exp\left[-\nu \vec{r}^2 - \vec{\zeta}^2 + 2\nu \vec{r} \cdot \vec{\zeta}/\sqrt{\nu}\right]$$

the cross term can be Taylor expanded as:

$$\exp[2\nu \vec{r} \cdot \vec{\zeta}/\sqrt{\nu}] = 1 + \sum_{k=1}^{\infty} \frac{1}{k!} (2\nu R(x+i\Lambda y))^k$$

For $\Lambda = 1$, one finds:

$$\exp[2\nu \vec{r} \cdot \vec{\zeta}/\sqrt{\nu}] = 1 + \sum_{k=1}^{\infty} \frac{1}{k!} \frac{1}{s_k} (2\nu rR)^k Y_{kk}(\Omega)$$

For $\Lambda = 1$ the single particle wave function in the quasi cluster becomes

$$\psi_{i} = \left(\frac{2\nu}{\pi}\right)^{\frac{3}{4}} \{1 + s_{1}^{-1} 2\nu r_{i} R Y_{11}(\Omega_{i}) + (1/2!) s_{2}^{-1} (2\nu r_{i} R)^{2} Y_{22}(\Omega_{i}) + (1/3!) s_{3}^{-1} (2\nu r_{i} R)^{3} Y_{33}(\Omega_{i}) + \cdots + (1/n!) s_{n}^{-1} (2\nu r_{i} R)^{n} Y_{nn}(\Omega_{i}) + \cdots + (1/n!) s_{n}^{-1} (2\nu r_{i} R)^{n} Y_{nn}(\Omega_{i}) + \cdots \} \exp[-\nu r_{i}^{2}].$$

for the spin-up nucleon (complex conjugate for spin-down)

Figure 1: Convergence behavior in a static HF iteration showing an intermediate quasistable state of ¹⁶C. Plotted are the relative change in total energy from one iteration to the next, $\Delta E = |\frac{E_{n+1}-E_n}{E_n}|$ and the average fluctuation in the single-particle energies as defined in Eq.(eq:hfluct).

Figure 2: Convergence behavior in a static HF iteration showing an intermediate quasistable state of ¹⁶C. Plotted are the quadrupole deformation parameter β (full curve) and the $\Re(Q_{31})$ expectation value described in the text (dashed curve).

Previous Story / Volume 28 archive

Phys. Rev. Lett. **107**, 112501 (issue of 9 September 2011) <u>Title and Authors</u>

Physical Review

9 September 2011

Rod-Shaped Nucleus

We picture atomic nuclei as spherical globs of protons and neutrons, although they can also be egg-shaped. Now calculations published 9 September in Physical Review I effers show that an even more exotic shape is possible: a rapidly spinning nucleus can form into a linear chain of several small clusters of neutrons and protons. Such exotic nuclear states could play important intermediary roles in the formation of carbon-12 and oxygen-16-elements essential for life--in the interiors of stars. The authors' new technique for calculating such structures also allows for the study of even more exotic arrangements.

The shape of a nucleus has important

Phys. Rev. Lett. 107, 112501 (2011)

All in a row. A spinning oxygen-16 nucleus can spread out into a linear chain of four clusters, according to calculations. This is the first clear evidence for such a "linear-chain" state.

How we can stabilize such states?

- Adding valence neutrons
- Orthogonalizing to low-lying states
- Rotating the system