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Outline

The basics of geometric phases

Berry’s phase (1984) — cyclic adiabatic change
A neglected player in 60 year history of quantum theory

Pancharatnam’s phase (1956) — polarization optics
Geometric phase is now recognized as an important concept in
quantum and classical physics. — Now in textbooks of QM!

Geometric phase in quantum eraser

Geometric phase as fringe shift
Nonlinear behavior of fringe shift

Weak measurement

Quantum eraser and weak measurement
Geometric phase in weak measurement
Anomaly of weak values

Collaborators: H. Kobayashi, S. Tamate, Y. Ikeda, K. Ogawa, and T.

Nakanishi
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Absolute phase of wavefunction

Freedom of choice of the phase of wavefunction
— choice of gauge

|ψ′〉 = eiφ|ψ〉

|ψ′〉 and |ψ〉 represent a same physical state.

Gauge-independent quantities (N.B. 〈ψ′| = e−iφ〈ψ|)
Probability

P = 〈ψ′|ψ′〉 = 〈ψ|ψ〉

Expectation value of an operator A

〈Â〉 = 〈ψ′|Â|ψ′〉 = 〈ψ|Â|ψ〉

Density matrix operator

ρ̂ = |ψ′〉〈ψ′| = |ψ〉〈ψ|
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Relative phase

Superposition of two states |ψ1〉 and |ψ2〉

|ψ(α)〉 := |ψ1〉 + eiα|ψ2〉

α: relative phase for superposition

Probability P (α) = 〈ψ(α)|ψ(α)〉 gives interference pattern.

P (α) = 〈ψ1|ψ1〉 + 〈ψ2|ψ2〉 + eiα〈ψ1|ψ2〉 + c.c.

Gauge dependence of the interference terms

eiα〈ψ1|ψ2〉 = ei(α+φ1−φ2)〈ψ′
1|ψ′

2〉

The relative phase α is gauge-dependent and depends on the
difference of absolute phases.

α′ = α+ (φ1 − φ2)
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In-phase relation

We can adjust the phase difference (φ1 − φ2) so that 〈ψ′
2|ψ′

1〉
becomes real, i.e.,

0 = arg〈ψ′
1|ψ′

2〉 = arg〈ψ1|ψ2〉 − φ1 + φ2

Such two (non-orthogonal) states |ψ′
1〉 and |ψ′

2〉 are
considered in-phase and written as

|ψ′
1〉⌢ |ψ2〉

Example — In-phase relations between photon polarizations

|R〉 |R’〉 |H〉|H〉 |45◦〉|45◦〉
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Non transitivity of in-phase relation

Pancharatnam, Proc. Indian Acad. Sci. A 44, 247 (1956)
In-phase relation is not transitive;

|ψ1〉⌢ |ψ2〉 and |ψ2〉⌢ |ψ3〉
does not imply |ψ1〉⌢ |ψ3〉

Comparing |ψ′
1〉 (⌢ |ψ3〉) and

|ψ1〉, we have

|ψ′
1〉 = eiγ |ψ1〉

where

γ = arg〈ψ1|ψ3〉〈ψ3|ψ2〉〈ψ2|ψ1〉

γ

|ψ1〉 |ψ2〉

|ψ3〉

|ψ′
1〉

γ is gauge-independently determined by the three states |ψ1〉, |ψ2〉,
and |ψ3〉. — Geometric (Berry, Pancharatnam) phase
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Movie

In-phase relations
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Threeness

〈1|3〉〈3|2〉〈2|1〉 is the minimal gauge-independent complex
number

〈1|1〉 real

〈1|2〉〈2|1〉 real

〈1|3〉〈3|2〉〈2|1〉 complex

γ = arg〈1|3〉〈3|2〉〈2|1〉 is the minimal non-trivial phase
Cases of higher number are reduced to the case of three

arg〈1|4〉〈4|3〉〈3|2〉〈2|1〉
= arg〈1|4〉〈4|2〉〈2|1〉 + arg〈2|4〉〈4|3〉〈3|2〉

1

2

3
4
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Integration of geometric phase

Geometric phase for four states (geodesic quadrangle)

γ(ψ1, ψ2, ψ3, ψ4) = γ(ψ1, ψ2, ψ3) + γ(ψ1, ψ3, ψ4)

Geometric phase for continuous closed loop C

γ(C) =

∮

C

γ =

∫

Ω

dγ, C = ∂Ω

ψ1
ψ2

ψ3

ψ4

C = ∂Ω

Ω

γ(ψ1, ψ2, ψ3) is a building block of geometric phase.
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Two-level system — Poincaré sphere

Two-state system (basis kets: |e1〉, |e2〉)

|ψ〉 = a1|e1〉 + a2|e2〉 ∈ H = C
2

One-to-one correspondence between
states ρ and 3-D unit vectors s

ρ =
1

2
(1̂ + s · σ), σ : Pauli matrices

— Poincaré sphere

It is easy to show that the geometric
phase γ is related to the surface area
Ω.

γ(ψ1, ψ2, ψ3) = −Ω

2
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Quantum eraser

Scully and Drühl: Phys. Rev. 25, 2208 (1982)

Complementarity (wave-particle duality)

Interference fringe (wave) ↔ Which-path information (particle)

In interferometry, an attempt to obtain the which-path
information by marking (or whatever) destroys the
interference fringe.
However, if the information is lost somehow, the fringe is
recovered. — Quantum eraser (due to post selection)

interferometer

fringe

(cf) Wheeler’s delayed choice experiment 11 / 38



Quantum eraser

Scully and Drühl: Phys. Rev. 25, 2208 (1982)

Complementarity (wave-particle duality)

Interference fringe (wave) ↔ Which-path information (particle)

In interferometry, an attempt to obtain the which-path
information by marking (or whatever) destroys the
interference fringe.
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Quantum eraser

Scully and Drühl: Phys. Rev. 25, 2208 (1982)

Complementarity (wave-particle duality)

Interference fringe (wave) ↔ Which-path information (particle)

In interferometry, an attempt to obtain the which-path
information by marking (or whatever) destroys the
interference fringe.
However, if the information is lost somehow, the fringe is
recovered. — Quantum eraser (due to post selection)

interferometer

marking post selection
fringe reappear!

(cf) Wheeler’s delayed choice experiment 13 / 38



Geometric phase in quantum eraser

waveplate
(marker)

polarizer
(eraser)

erase

geometric phase

Polarization marking: |ψm1〉, |ψm2〉
Erasing marker with |ψ〉f ⇒ geometric phase:

γ = arg〈ψm1|ψf〉〈ψf|ψm2〉〈ψm2|ψm1〉
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Experimental demonstration

Measurement of geometric phase in quantum eraser

Very easy setup

H. Kobayashi, MK et al., J. Phys. Soc. Jpn. 80, 034401
(2011)
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State change on the Bloch sphere

State parameter : θ1，θ2

Polarization states : |ψm1(θ1)〉，|ψm2(θ1)〉，|ψf(θ2)〉
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Nonlinear geometric phases

For θ1 = π/4

Ω ∝ θ2

For θ1 ≪ 1

Ω varies rapidly around
θ2 = π/2
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Interference images on CCD
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Nonlinear geometric phases for photon pairs

Identically polarized Photon pairs ⇒ Twice the geometric
phase
|Ψi〉 = |ψi〉|ψi〉 (i = 1, 2, 3)

arg〈Ψ1|Ψ3〉〈Ψ3|Ψ2〉〈Ψ2|Ψ1〉 = 2arg〈ψ1|ψ3〉〈ψ3|ψ2〉〈ψ2|ψ1〉
Twice the amplification for same bandwidth

single
photon

photon
pair
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Observation of two-photon geometric phases

H. Kobayashi, MK et al., Phys. Rev. A 83, 063808 (2011)

Photon pairs are generated by parametric down conversion

Geometric phases are observed in two-photon interference
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Weak measurement

Aharonov et al., PRL 60, 1351 (1988)

Quantum measurement with weak interaction and post

selection

The measured value could be much larger than in the ordinary
measurement — weak value

Probability of success is sacrificed.

21 / 38



Application of weak measurement

Hosten et al., Science 319, 787 (2008).

Detection of optical spin Hall effect

Tiny amount of beam shifts ∼ 0.1 nm can be measured.
Enhancement factor: ∼ 104
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Weak value and probe shift

Utilizing the indirect measurement model, we can easily find
the probe shift as

〈∆x〉 ∝ ǫRe〈Â〉w = ǫRe
〈ψf|Â|ψi〉
〈ψf|ψi〉

for the interaction Hamiltonian ĤI = ǫÂ⊗ p̂
The coupling ǫ must be small (weak) but by setting 〈ψf|ψi〉
small enough, we can have a large probe shift.
We can measure the imaginary part by using different
interaction Hamiltonian.

P̂i P̂fǫÂ

ti tm tf

Re

Im

“1”“1”
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Relationship between quantum eraser and weak
measurement

S. Tamate, MK et al., New J. Phys. 11, 093025 (2009)

labelling

labelling

pre-selection

post-selection

interaction
post-selection

pre-selection

quantum eraser

weak measurement

measurement of phase difference

mesurement of phase gradient
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Weak operator — two-state operator

Initial state | i 〉 (Pre-selection), Final state | f 〉
(Post-selection)

Weak operator (for 〈 i | f 〉 6= 0)

Ŵ :=
| i 〉〈 f |
〈 f | i 〉 (= Ŵif)

Gauge independent (cf. | i 〉〈 f | : gauge dependent)

Ŵ characterizes the pre- and post-selected ensemble

For | i 〉 = | f 〉, Ŵ reduces to the density operator ρ̂ = | i 〉〈 i |.
Normalized, Tr Ŵ = 1.
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Weak value by weak operator

With weak operator Ŵ , the weak value for a quantity Â is
represented as

〈Â〉w = Tr ÂŴ =
〈 f |Â| i 〉
〈 f | i 〉 (= 〈Â〉w;if)

(cf) 〈Â〉 = Tr Âρ̂ = 〈 i |Â| i 〉
Unlike density operators, weak operators are not Hermite nor
normal; Ŵ † 6= Ŵ , [Ŵ †, Ŵ ] 6= 0.
— No spectral decomposition

Real and imaginary parts (Hermite):

ŴR := (Ŵ + Ŵ †)/2

ŴI := (Ŵ − Ŵ †)/2i
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Physical meaning of the pre- and post selected ensemble

Density operator ρi: preselected ensemble

Weak operator Ŵif: ensemble filtered with preselection (i) and
postselection (f).

Analogy — a group of student of high school (i) who
successfully entered university (f).

The ensemble is determined after high school.
The measurements have to be done in the high school.
The measurements have to be weak. (Hard tests destroy
students!)
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Weak values for projection operators

The weak values wk for projection operators P̂k = |mk〉〈mk|
for an orthonormal basis |mk〉 (k = 1, 2, . . . , n).

wk = 〈P̂k〉w = Tr P̂kŴ =
〈mk| i 〉〈 f |mk〉

〈 f | i 〉

Due to the completeness P̂1 + P̂2 + · · · + P̂n = 1̂, we have
w1 + w2 + · · · +wn = 1.

| i 〉

| f 〉

|m1〉

|m2〉

|mn〉

w1

w2

wn
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Complex probability measure

wk seems to represent the probability that the initial state | i 〉
is transfered to the final state | f 〉. through the intermediate
states |mk〉.
However, the probabilities wk take complex values.

Despite of the fact that the eigenvalue of P̂k are in {0, 1}, the
weak value wk = 〈P̂k〉w can take a value outside of [0, 1] and
even be complex.

When you think of a probability for quantum paths, you must
allow it to be negative, larger than one, or even complex.

R.P. Feynman: “QED — The strange theory of light and matter”,

Princeton University Press (1985).
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Three-box paradox

An example of negative probability
Aharonov and Vaidman: Lecture Notes in Physics M72, 369 (2002)

Three-state system {|m1〉, |m2〉, |m3〉}.

| i 〉 = (|m1〉 + (|m2〉 + |m3〉))/
√

3 = (|m2〉 + (|m1〉 + |m3〉))/
√

3

| f 〉 = (|m1〉 + (|m2〉 − |m3〉))/
√

3 = (|m2〉 + (|m1〉 − |m3〉))/
√

3

The probabilities (weak values) are

w1 = 1, , w2 = 1, w3 = −1

w({1, 2}) = 2, w({2, 3}) = 0, w({3, 1}) = 0

w({1, 2, 3}) = 1
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Post-selected sub-ensemble

For the (pre- and post-selected) sub-ensemble Ŵif, the
probabilites for paths P̂i = | i 〉〈 i | and P̂f = | f 〉〈 f | are

〈| i 〉〈 i |〉w = 〈| f 〉〈 f |〉w = 1

where 〈 i | f 〉 6= 0.

A system that belongs to this sub-ensemble considered to
have been in the state | i 〉 for sure and in the state | f 〉 for
sure as well.

Even though [P̂i, P̂f] 6= 0 (incompatible), each of P̂i and P̂f

have a definite value for the sub-ensemble Ŵif.
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Weak value and geometric phase

For the spectral decomposition Â =
∑

k akP̂k of a physical

quantity Â, its weak value is

〈Â〉w =
∑

k

akwk

Anomaly of weak value has root in the complex probability
measure {wk}.
The phase of wk is

arg wk = arg
〈 f |mk〉〈mk| i 〉

〈 f | i 〉
= arg〈 i | f 〉〈 f |mk〉〈mk| i 〉 = γ3( i ,mk, f )

= the geometric phase determined by | i 〉, |mk〉, | f 〉
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Weak value and geometric phase (2)

In typical situation of weak measurements, | i 〉 and | f 〉 are
almost orthogonal.

On the Poincare sphere, they are located almost conjugate
positions. The phase (the area of spherical triangle) is strongly
dependent on the choice of the intermediate state |mk〉.
In cases of | i 〉 = | f 〉, the geometric phase vanishes and wk

becomes real:

wk =
〈 i |mk〉〈mk| i 〉

〈 i | i 〉 = |〈 i |mk〉|2

which reduces to the normal probalibity of finding.

The weak value, determined by three states, is closely related to
the geometric phase.
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Pre and post selection with mixed states

The weak operator for pre- and post-selection with mixed
state can be defined as

Ŵ =
ρ̂iρ̂f

Tr ρ̂fρ̂i

where ρ̂i and ρ̂f are the density operators of pre- and
post-selection states.

The pure state case can be recovered by ρ̂f = | f 〉〈 f |,
ρ̂i = | i 〉〈 i |.
The post-selection with completely mixed state, ρ̂f = 1̂/n
yields

Ŵ = ρ̂i, 〈Â〉w = Tr Âρ̂i = 〈Â〉,

which corresponds to no post-selection cases.
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Weighted sum — flagility of weak value

Post-selection with the mixed state composed of two states
|f1〉, |f2〉 weighted by p1, p2 (≥ 0), p1 + p2 = 1;

ρ̂f = p1|f1〉〈f1| + p2|f2〉〈f2|

Weak value for | i 〉 and ρf:

〈Â〉w =
p1|〈 i |f1〉|2〈Â〉w1 + p2|〈 i |f2〉|2〈Â〉w2

p1|〈 i |f1〉|2 + p2|〈 i |f2〉|2

where 〈Â〉wj = 〈 i |Â| f j〉/〈 i | f j〉 (j = 1, 2).

Weak values with large absolute value (or small |〈 i |fj〉|) are
added with small weights.

Large weak values are fragile against mixing.
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Determination of wavefunction with weak measurement

An orthonormal basis vectors: |mk〉 (k = 1, 2, . . . , n)

An arbitrary initial state |ψ〉 = | i 〉.
The state for the post selection: | f 〉 = (1/

√
n)

∑n
k=1 |mk〉.

The weak value for the projector P̂k = |mk〉〈mk| is

〈P̂k〉w = ψk

/

n
∑

k=1

ψk

where ψk = 〈mk|ψ〉 is the probability amplitude or the wave
function.

By repeating weak measurement for all k, we can measure the
wave function ψk.

The gauge is fixed with the choice of phases of basis vectors
|mk〉.
It is believed that the wavefunction cannot be measured
because it is complex and guage-dependent.
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Experimental determination of wavefunction

Continuous 1D basis: {|x〉 | −∞ < x <∞}
Photon beam spread 1-dimensionally Ψ(x)

J.S. Lundeen et al., Nature 474 188 (2011).
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Summary

Simple experiment for measuring geometric phases in
quantum eraser

Kobayashi et al., J. Phys. Soc. Jpn. 80, 034401 (2011)

Relationship between nonlinear geometric phases and weak
value

Tamate et al., New J. Phys. 11, 093025 (2009)

Observation of two-photon geometric phase and its
nonlinearity

Kobayashi et al., Phys. Rev. A 83, 063808 (2011)

Bloch sphere representation of three-vertex geometrical phases
Tamate et al., Phys. Rev. A 84, 052114 (2011)

弱測定と幾何学的位相

北野, 数理科学 3月号 (2012, inpress)
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