Weak measurement and quantum interference

— from a geometrical point of view

Masao Kitano

Department of Electronic Science and Engineering, Kyoto University

February 13-15, 2012

GCOE Symposium, Links among Hierarchies, Kyoto University



@ The basics of geometric phases

o Berry's phase (1984) — cyclic adiabatic change

A neglected player in 60 year history of quantum theory
@ Pancharatnam’s phase (1956) — polarization optics
@ Geometric phase is now recognized as an important concept in
quantum and classical physics. — Now in textbooks of QM!

@ Geometric phase in quantum eraser

@ Geometric phase as fringe shift

@ Nonlinear behavior of fringe shift
@ Weak measurement

@ Quantum eraser and weak measurement

@ Geometric phase in weak measurement

¢ Anomaly of weak values

Collaborators: H. Kobayashi, S. Tamate, Y. lkeda, K. Ogawa, and T.
Nakanishi



Absolute phase of wavefunction

@ Freedom of choice of the phase of wavefunction
— choice of gauge

[Y') = )

@ |¢') and |¢) represent a same physical state.
o Gauge-independent quantities  (N.B. (¢//| = e719(y)])
@ Probability

P = @'|W) = ()
o Expectation value of an operator A
(A) = (W'|A]g') = (v|AL)
o Density matrix operator

p=1) W' = [¥)(¥]



Relative phase

@ Superposition of two states |1);) and |¢2)

[¥(a)) = [¢1) + €¢hn)

«: relative phase for superposition
@ Probability P(a) = (¢(«)|¢(c)) gives interference pattern.

P(a) = (§1]th1) + (o) + € (1 fih) + c.c.
@ Gauge dependence of the interference terms
e (1 [¢hg) = el OTP192) () )

@ The relative phase « is gauge-dependent and depends on the
difference of absolute phases.

o =a+ (¢1— ¢2)



In-phase relation

@ We can adjust the phase difference (¢1 — ¢2) so that (¢5|y))
becomes real, i.e.,

0 = arg(y1]vy) = arg(y1|e) — d1 + ¢

@ Such two (non-orthogonal) states |¢}) and |¢%) are
considered in-phase and written as

1) ~ [b2)
@ Example — In-phase relations between photon polarizations
IR) [H) |45°) [H) [45°)



Non transitivity of in-phase relation

Pancharatnam, Proc. Indian Acad. Sci. A 44, 247 (1956)
@ In-phase relation is not transitive;

1) ~ [th2) and  [the) ~ |¢3)
does not imply  [¢1) ~ [¢h3)

o Comparing 1)) (~ |is)) and
|11), we have

[¥1) = e n)
where

¥ = arg(¢1|¢3><¢3‘¢2><¢2‘¢1>

7y is gauge-independently determined by the three states [¢1), |¢2),
and |t¢3). — Geometric (Berry, Pancharatnam) phase J




Movie

In-phase relations



Threeness

o (1]3)(3]2)(2]1) is the minimal gauge-independent complex

number
(1]1) real
(1]12)(2]1) real
(113)(3]2)(2]1) complex

o v = arg(1]3)(3|2)(2|1) is the minimal non-trivial phase
@ Cases of higher number are reduced to the case of three
arg(1]4)(43)(3[2)(2[1)
= arg(1]4)(4|2)(2|1) + arg(2[4)(4[3)(3[2)
4

~

3



Integration of geometric phase

@ Geometric phase for four states (geodesic quadrangle)

V(1,2 3,104) = (Y1, 2, 93) + (1,103, 94)

@ Geometric phase for continuous closed loop C'

WO = f = [ 4 c-o0

(on
Y3

/s
(3 V2 C =0n

(1,12, 13) is a building block of geometric phase. |




Two-level system — Poincaré sphere

@ Two-state system (basis kets: |e1), |e2))

[) = ailer) + asles) € H =C?

@ One-to-one correspondence between
states p and 3-D unit vectors s

—_

p= 5(1 +s-0), o :Pauli matrices

— Poincaré sphere

@ [t is easy to show that the geometric

phase 7 is related to the surface area
Q.

Q
7(7/)177/)271#3) - _5
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Quantum eraser

Scully and Driihl: Phys. Rev. 25, 2208 (1982)
o Complementarity (wave-particle duality)

Interference fringe (wave) < Which-path information (particle)

@ In interferometry, an attempt to obtain the which-path
information by marking (or whatever) destroys the
interference fringe.

@ However, if the information is lost somehow, the fringe is
recovered. — Quantum eraser (due to post selection)

interferometer

fringe

(cf) Wheeler's delayed choice experiment 11/38
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Quantum eraser

Scully and Driihl: Phys. Rev. 25, 2208 (1982)
o Complementarity (wave-particle duality)

Interference fringe (wave) < Which-path information (particle)

@ In interferometry, an attempt to obtain the which-path
information by marking (or whatever) destroys the
interference fringe.

@ However, if the information is lost somehow, the fringe is
recovered. — Quantum eraser (due to post selection)

_

mamng post selec.tion
fringe reappear!

interferometer

(cf) Wheeler's delayed choice experiment 13/38



Geometric phase in quantum eraser

(marker)

waveplate \/\/\/\/
n
N0
@ ) Q 5 erase

N
> m i ig o \\\/\

= polarizer:
i (eraser) = ry"

geometric phase

---------

@ Polarization marking: |¢m1), |¢¥m2)

@ Erasing marker with |1)f = geometric phase:

v = arg(Ym1|vs) (Y| Ym2) (Pm2|Pm1)
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Experimental demonstration

@ Measurement of geometric phase in quantum eraser

double-sided tape (opaque wire)

il

CCD camera
LP, (61) QWPg (90°) LP; (62)

@ Very easy setup

o H. Kobayashi, MK et al., J. Phys. Soc. Jpn. 80, 034401
(2011)
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State change on the Bloch sphere

o State parameter : 61, 05
@ Polarization states : |[m1(01)), [¥m2(01)), |¢¢(62))
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Nonlinear geometric phases

@ For 91:71'/4 @ For 91 <1

2 x 0, J {2 varies rapidly around
0y = m/2

17 /38



Interference images on CCD

normalized light intensity / a.u.
O NN 1

(@ #,=45° (b) 6;=9°

o |
-~ |

- I I
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Nonlinear geometric phases for photon pairs

@ ldentically polarized Photon pairs = Twice the geometric
phase

o |Uy) = |[vy)by) (i=1,2,3)
arg (V1| Ws)(Ws|Wa) (Wa|Vy) = 2arg(y1[vs) (¥slib2) (2¢1)

@ Twice the amplification for same bandwidth

47
photon
pair
Y 27
single
0 photon
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Observation of two-photon geometric phases

@ H. Kobayashi, MK et al., Phys. Rev. A 83, 063808 (2011)

b L — A0

410nm | Hprn VOV

optical
fiber

IF .ﬂ.‘/photon pair .
-‘:Gl.‘il_l MA

QWP,4(0%)

y Mg - fq APD

U
QWP;5(90°) _L

LP2(62)

coincidence

@ Photon pairs are generated by parametric down conversion

APD

@ Geometric phases are observed in two-photon interference
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Weak measurement

Aharonov et al., PRL 60, 1351 (1988)

@ Quantum measurement with weak interaction and post
selection

@ The measured value could be much larger than in the ordinary
measurement — weak value

@ Probability of success is sacrificed.

pre-selection

) AN

~ weak
measured | _interaction probe
system system

|vs)

post-selection

Weak Value

(slhr)
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Application of weak measurement

Hosten et al., Science 319, 787 (2008).
@ Detection of optical spin Hall effect

wavelength: 633nm

@ Tiny amount of beam shifts ~ 0.1 nm can be measured.
Enhancement factor: ~ 10% 22/38



Weak value and probe shift

@ Utilizing the indirect measurement model, we can easily find
the probe shift as

(Az) o eRe(A)y = €Re (el Al)

(e|ei)
for the interaction Hamiltonian H, = €A ®p
@ The coupling € must be small (weak) but by setting (1¢|t);)
small enough, we can have a large probe shift.
@ We can measure the imaginary part by using different
interaction Hamiltonian.

23/38



Relationship between quantum eraser and weak

measurement

@ S. Tamate, MK et al., New J. Phys. 11, 093025 (2009)

quantum eraser [11) = |tm1)
. [| labelling
P(8) = 6(0))(6(6) w || ped
10
1 ..
9(8)) = 5 (Ip1) + € p2)) ﬂ :
pre-selection
measurement of phase difference [41) — [m2) post-selection
weak measurement H =gpA
_ ) Ip) / .
P(:Jc) = |x)(z l3) ? ) ngx
) = —1 zp/h P dp 0
)= 7o | j
pre-selection - eraction
n
mesurement of phase gradient [4;) — [Ym(p))  post-selection
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Weak operator — two-state operator

@ Initial state |i) (Pre-selection),  Final state |f)
(Post-selection)

@ Weak operator (for (i|f) # 0)
o LD(f] ;
W= "+ (= Wy
(fli)
Gauge independent (cf. |i)(f| : gauge dependent)
o W characterizes the pre- and post-selected ensemble

o For |i) = |f), W reduces to the density operator p = |i){i|.
@ Normalized, W = 1.

25/38



Weak value by weak operator

@ With weak operator W, the weak value for a quantity Ais
represented as
i (FIA[T)

<A>w =Tr AW = <f| i> (: <A>w;if)

(cf) (A) = Tr Ap = (i]Ali)

@ Unlike density operators, weak operators are not Hermite nor
normal; WT £ W, [WT, W] # 0.
— No spectral decomposition

@ Real and imaginary parts (Hermite):

Wr:= (W +Wh))/2
W= (W —Wwh/2i

26 /38



Physical meaning of the pre- and post selected ensemble

@ Density operator p;: preselected ensemble

@ Weak operator Wi ensemble filtered with preselection (i) and
postselection (f).
@ Analogy — a group of student of high school (i) who
successfully entered university (f).
@ The ensemble is determined after high school.

@ The measurements have to be done in the high school.
o The measurements have to be weak. (Hard tests destroy

students!)

27 /38



Weak values for projection operators

@ The weak values wy, for projection operators P, = |my)(my|
for an orthonormal basis [my) (k =1,2,...,n).

(mg|i)(F[mg)
(f[i)

@ Due to the completeness 151 + 152 4+ 4 Pn — 1, we have
wy Wy 4wy = 1.

wy, = (Pk>w =Tr P,W =

[m1)

28 /38



Complex probability measure

@ wy seems to represent the probability that the initial state |i)
is transfered to the final state |f). through the intermediate
states |my).

@ However, the probabilities wy take complex values.

o Despite of the fact that the eigenvalue of Py are in {0,1}, the
weak value wy, = (Py)w can take a value outside of [0,1] and
even be complex.

@ When you think of a probability for quantum paths, you must
allow it to be negative, larger than one, or even complex.

R.P. Feynman: “"QED — The strange theory of light and matter”,
Princeton University Press (1985).
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Three-box paradox

@ An example of negative probability
Aharonov and Vaidman: Lecture Notes in Physics M72, 369 (2002)

@ Three-state system {|m1), |ms),|m3)}.
)
f)

@ The probabilities (weak values) are

(Im1) + (Im2) + Im3)))/V3 = (Jma2) + (Im1) + |ms)))/V3
(Im1) + (Im2) = [m3)))/V3 = (Jma2) + (Jm1) — |m3)))/V3

wi =1, ,weo=1, wgz=-—1

w({17 2}) =2, w({273}) =0, w({?’v 1}) =0
w({1,2,3}) =1
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Post-selected sub-ensemble

@ For the (pre- and post—AseIected) sub—en§emb|e Wi, the
probabilites for paths P, = |i)(i| and P; = |f)(f| are

(D Dw = () {fhw =1

where (i|f) # 0.

@ A system that belongs to this sub-ensemble considered to
have been in the state |i) for sure and in the state |f) for
sure as well.

o Even though [P}, P] # 0 (incompatible), each of P, and P
have a definite value for the sub-ensemble Wj.
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Weak value and geometric phase

@ For the spectral decomposition A= Yk ar Py, of a physical
quantity A, its weak value is

<A>W = Z ApWi
k

@ Anomaly of weak value has root in the complex probability
measure {wy}.

@ The phase of wy, is
(flmg){mpgli)

(fli)
= arg(i|f)(f|mg)(my|i) =3(i, my, )

arg wi = arg

= the geometric phase determined by |i), [my), |f)

32/38



Weak value and geometric phase (2)

@ In typical situation of weak measurements, |i) and |f) are
almost orthogonal.

@ On the Poincare sphere, they are located almost conjugate
positions. The phase (the area of spherical triangle) is strongly
dependent on the choice of the intermediate state |my).

@ In cases of |i) = |f), the geometric phase vanishes and wy,
becomes real:

Glm (meli) oy

which reduces to the normal probalibity of finding.

Wp =

The weak value, determined by three states, is closely related to
the geometric phase.

33/38



Pre and post selection with mixed states

@ The weak operator for pre- and post-selection with mixed
state can be defined as

A A

% Pipf
W= "~
Tr pepi

where p; and ps are the density operators of pre- and
post-selection states.

@ The pure state case can be recovered by pr = |f)(f],
pi = [1)(il.

@ The post-selection with completely mixed state, pf = i/n
yields

W=pi, (A =TrAp = (A),
which corresponds to no post-selection cases.
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Weighted sum — flagility of weak value

@ Post-selection with the mixed state composed of two states
If1), |f2) weighted by p1, p2 (> 0), p1 + p2 = 1;

pr = palfi)(fr] + palfz) (2
@ Weak value for |i) and pf:
pal (i )P (A)wa + pal (i [f2) 2 (A)we
pal (i) [* + pof (i [f2) ]

where (A); = (i|A|f,)/{i]£;) (j = 1,2)
@ Weak values with large absolute value (or small |(i[f;)]) are
added with small weights.

<A>w =

@ Large weak values are fragile against mixing.
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Determination of wavefunction with weak measurement

@ An orthonormal basis vectors: |my) (k=1,2,...,n)
@ An arbitrary initial state |¢) = |i).
The state for the post selection: |f) = (1//n)Y p_; |mg).

@ The weak value for the projector P, = |my)(my| is

(Pi)w = W/Z?ﬁk
k=1

where 1, = (mg|v) is the probability amplitude or the wave
function.

@ By repeating weak measurement for all k£, we can measure the
wave function .

@ The gauge is fixed with the choice of phases of basis vectors
Img).

@ It is believed that the wavefunction cannot be measured
because it is complex and guage-dependent.
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Experimental determination of wavefunction

@ Continuous 1D basis: {|z)| —oc0 <z < o0}
@ Photon beam spread 1-dimensionally ¥ (x)

Weak Strong

Readout
Preparation measurament measuremant of weak
of Hix) of x ofp=0 measurament
A, A A
h} Af’ B N
RB X FT lens g
3 A + ., Det1
! VoA 4
Pok = i iz @
gy
,ﬂ @:{»z 9 H [l uD
1 ol
! {15 stivar | ¢ { PBS Dat
S ' l Slit e
o [ B e S ETTY R DR DTSR PP PP TPTER =
fikre fi " Mask f f

J.S. Lundeen et al., Nature 474 188 (2011).
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@ Simple experiment for measuring geometric phases in
quantum eraser
Kobayashi et al., J. Phys. Soc. Jpn. 80, 034401 (2011)

@ Relationship between nonlinear geometric phases and weak
value
Tamate et al., New J. Phys. 11, 093025 (2009)

@ Observation of two-photon geometric phase and its
nonlinearity
Kobayashi et al., Phys. Rev. A 83, 063808 (2011)

@ Bloch sphere representation of three-vertex geometrical phases
Tamate et al., Phys. Rev. A 84, 052114 (2011)

o GHIE & i FHINTAH
Je8r, #PEY: 3 H 5 (2012, inpress)
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