# Proton elastic scattering and the radius of <sup>9</sup>C

Contents

1. Motivation

- 2. Experimental setup
- 3. Experimental result (<sup>9</sup>C)
- 4. Summary

Y. Matsuda Kyoto University GCOE Symposium Feb. 13 2012 Kyoto University Clock Tower Centennial Hall Internationak Conference Hall

## **Motivation**

#### **Nuclear size**

- Fundamental properties of nuclei
- Inputs and/or guidelines to describe nuclear reactions and structures

|                                  | Stable nuclei             |
|----------------------------------|---------------------------|
| Charge radius<br>(Matter radius) | Muonic atom               |
| Charge distribution              | Electron scattering       |
| Neutron distribution             | Proton elastic scattering |

#### Proton elastic scattering

H.Feshbach, Ann.Phys.5(1958)357

$$(H_0 + \underline{U})|\psi\rangle = E|\psi\rangle$$

$$U \equiv \langle 0|V|0 \rangle + \langle 0|PVQ \frac{1}{E - QHQ + i\epsilon} QVP|0 \rangle$$
  
 
$$\sim \langle 0|V|0 \rangle$$

U : optical potential
|0⟩: grand state wave function of target nucleus
V : NN effective interaction

 $P = |0\rangle\langle 0|$ : projection operator to the elastic channel

Q=1-P : projection operator to the other channels

 $|\Psi\rangle$  : total wave function of the flame

 $|\psi\rangle$  : wave function of the relative motion of the elastic channel

$$\begin{aligned} (PHP + PHQ)|\Psi &>= EP|\Psi > \\ (QHP + QHQ)|\Psi &>= EQ|\Psi > \\ \left( PH_0P + PVP + PVQ \frac{1}{E - QHQ + i\epsilon} QVP \right) P|\Psi &>= EP|\Psi > \end{aligned}$$

#### Stable nuclei



Selativistic Impulse Approximation (RIA) D. P. Murdock and C. J. Horowitz, PRC35, 1442.

Schenomenological medium modification

H. Sakaguchi et al., PRC57, 1749.

#### $\hookrightarrow$ Extraction of $\rho_n$ (<sup>116-124</sup>Sn, <sup>204-208</sup>Pb)

S. Terachima et al., PRC77, 024317. J.Zenihiro et al., PRC82, 044611.





## **Motivation**

#### **Nuclear size**

- Fundamental properties of nuclei
- Inputs and/or guidelines to describe the nuclear reactions and structures

|                                  | Stable nuclei             | Unstable nuclei                              |                               |
|----------------------------------|---------------------------|----------------------------------------------|-------------------------------|
| Charge radius<br>(Matter radius) | Muonic atom               | Isotope shift<br>(Interaction cross section) |                               |
| Charge distribution              | Electron scattering       |                                              |                               |
| Neutron distribution             | Proton elastic scattering | Concerning the density<br>experimetal data   | y distribution,<br>is rare !! |

#### Unstable nuclei



It has been difficult to measure in a wide momentum transfer region.

Experiments in the lower momentum transfer region (<1 fm<sup>-1</sup>) have been done so far.

- RIKEN, GANIL, MSU : <100 MeV/A
- GSI (He, Li isotope) : 700 MeV/A

#### Collaborators

S.Terashima (Beihang Univ.) J.Zenihiro (RIKEN) H.Sakaguchi (Osaka Univ.) H.Otsu (RIKEN) Y.Matsuda (Kyoto Univ.)

<u>RIKEN</u> H.Takeda K.Ozeki K.Yoneda K.Tanaka T.Ohnishi <u>Tohoku Univ.</u> T.Kobayashi

<u>Kyoto Univ.</u> T.Murakami

<u>Miyazaki Univ.</u> Y.Maeda

<u>Souel Univ.</u> Y.Sato <u>Osaka Univ.</u> I.Tanihata O.H.Jin

<u>GSI</u> M.Takechi S272 collaborators

<u>NIRS</u> M.Kanazawa

#### Recoil Proton Spectrometer (RPS)



1 m



|                | Solid H <sub>2</sub> (SHT) | RDC                              | $p \varDelta E$           | E                             |
|----------------|----------------------------|----------------------------------|---------------------------|-------------------------------|
| material       | Para H <sub>2</sub>        | Ar+C <sub>2</sub> H <sub>6</sub> | Plastic                   | NaI(Tl)                       |
| effective area | φ 30 mm                    | 436 x 436 mm <sup>2</sup>        | 440 x 440 mm <sup>2</sup> | 431.8 x 45.72 mm <sup>2</sup> |
| thickness      | 1 mm                       | 69.4 mm                          | 2.53 / 3.09 mm            | 50.8 mm                       |
| Resolution     |                            | 500 µm                           | TOF : 0.1 nsec            | 0.3 %(80 MeV)                 |

## Recoil Proton Spectrometer (RPS)



1 m



Solid para hydrogen target  $\phi$  30 mm, 1 mm<sup>t</sup>

|                | Solid H <sub>2</sub> (SHT) | RDC                              | $p \varDelta E$           | E                             |
|----------------|----------------------------|----------------------------------|---------------------------|-------------------------------|
| material       | Para H <sub>2</sub>        | Ar+C <sub>2</sub> H <sub>6</sub> | Plastic                   | NaI(Tl)                       |
| effective area | φ 30 mm                    | 436 x 436 mm <sup>2</sup>        | 440 x 440 mm <sup>2</sup> | 431.8 x 45.72 mm <sup>2</sup> |
| thickness      | 1 mm                       | 69.4 mm                          | 2.53 / 3.09 mm            | 50.8 mm                       |
| Resolution     |                            | 500 µm                           | TOF : 0.1 nsec            | 0.3 %(80 MeV)                 |



A drastic growth of the density distribution with an increase of the neutron number.

Antisymmetrized Molecular Dynamics (AMD) density: Yoshiko Kanada-En'yo and Hisashi Horiuchi, Progress of Theoretical Physics Supplement, 142 (2001) 205

-5









 $ho_{p,n}(r) \quad \propto$ 



|   | $a_p$ | $a_n$ | Model |
|---|-------|-------|-------|
| 1 | 0.541 | 0.526 | AMD   |
| 2 | 0.540 | 0.538 | SLy4  |
| 3 | 0.608 | 0.512 | RMF   |

1. N.Furutachi et al., PTP 121(2009) 586. 2. Comp. Nucl. Phys. 1, Chap. 2.

3. Comp. Nucl. Phys. 1, Chap. 7.



#### Summary

- We proposed a project, "Elastic Scattering of Protons with RI beams (ESPRI)".
  - Size and density distributions of unstable nuclei
  - Related topics: asymmetric nuclear matter, weakly bound systems, modification of shell structure.
- We have developed a Recoil Proton Spectrometer.
  - Thin and large solid hydrogen target
  - Extensive momentum transfer region: up to about 2 fm<sup>-1</sup>
  - Excitation energy resolution : about 400 keV(rms)
- We have measured following unstable nuclei:
  - <sup>9,10,11</sup>C @NIRS-HIMAC
  - <sup>20</sup>O @NIRS-HIMAC (not introduced in this talk)
  - <sup>66,70</sup>Ni @GSI (not introduced in this talk)
- The radius of <sup>9</sup>C:
  - 2.4-2.8 fm
  - Larger than the radius of  $^{12}\mathrm{C}$

## Future plan

- We are preparing to measure following nuclei:
  - <sup>12,13,14</sup>C @RCNP, Osaka Univ.
  - <sup>16</sup>C @RIKEN-RIBF

# End