Kyoto Univ. RIKEN

Double Spin Asymmetry of Single Electron Production on Proton-Proton Collisions

Katsuro Nakamura (Kyoto University) 2012/ 2/ 13

Kyoto University GCOE Symposium

Kyoto University GCOE Symposium

1

Internal Structure of a Nucleon

- Internal structure of a nucleon ~parton model ~
 - discovery of Bjorken scaling law
 - establishment of the parton model
 - Bjorken *x* : the momentum fraction of parton
 - total momentum fractions for each parton
 - *U*: *D*: *g* ~ 36%: 18%: 46%
- proton spin puzzle

 $\frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Delta G + L$

- Deeply Inelastic Scattering (DIS) experiment
- ΔΣ**~**25% !?

Large contribution from gluon polarization ?

Gluon Polarization Measurement

DIS experiment

- lepton-nucleon scattering
- cannot access to gluon in leading order
- semi-inclusive DIS experiment
 - next leading order
 - high p_T hadron pair measurement
 - open charm measurement

difficult to constraint on ΔG effectively

Current Status

of Gluon Polarization Measurement

Polarized p-p collision experiment

- direct contribution from gluon
- π^0 measurement provides the largest constraint on ΔG

Weak points of the π^0 measurement

- large uncertainty of fragmentation functions
- dependence on function form of Δg modeling

further multiple measurements with various channels are required

Spin Asymmetry Kyoto Univ. / JSPS / RIKEN of Heavy Quark Production

$$A_{LL}^{Heavy\,Quark} \equiv \frac{\sigma_{++}{}^{HQ} - \sigma_{+-}{}^{HQ}}{\sigma_{++}{}^{HQ} + \sigma_{+-}{}^{HQ}}$$
$$\sim \int dx_1 dx_2 \left(\hat{a}_{LL}{}^{gg} \frac{\Delta g}{g} \frac{\Delta g}{g} \right)$$

spin asymmetry of heavy quark production

- the main reaction is gluon-gluon scattering
- direct measurement for the gluon polarization
- hard process \rightarrow validity of pQCD
- an ideal channel to measure the gluon polarization

distribution of Bjorken x of gluons

contributed to each reaction

Kyoto University GCOE

Spin Asymmetry

of Single-Electron-Production

measurement of the heavy quark at PHENIX

detect an electron from heavy meson decay

$$\begin{cases} D^+ \to \overline{K}^0 \ v_e e^+ \text{ single electron} \\ D^0 \to \overline{K}^- \ v_e e^+ \text{ } & \overline{c} \ c \end{cases}$$

- spin asymmetry of the single electron production
 - asymmetry of inclusive (Signal+BG) electron production A_{LL}^{S+BG}

$$A_{LL}^{\text{singlee}} = \frac{1}{D} A_{LL}^{\text{S+BG}} - \frac{1-D}{D} A_{LL}^{\text{BG}} \approx \frac{1}{D} A_{LL}^{\text{S+BG}}$$
$$D \equiv \frac{N_e^{\text{singlee}}}{N_e^{\text{S+BG}}} : \text{Signal Occupancy}$$

 <u>BG reduction for large Signal Occupancy is important</u> for the measurement of the spin asymmetry

Background

Kyoto Univ. / JSPS / RIKEN

for the Single Electron Measurement

Brookhaven National Lab. (U.S.)

RHIC accelerator

RHIC PHENIX detector

PHENIX : detector complex

- pseudrapidity: $|\eta| < 0.35$
- azimuthal coverage: $\Delta \phi = 2 \times \pi/2$

Drift Chamber + Pad Chamber (DC + PC)

 tracking & momentum reconstruction for charged tracks

RICH Counter

- electron identification
- Electromagnetic Calorimeter (EMCal)
 - energy measurement for electrons & photons

Hadron Blind Detector (HBD)

- BG rejection for the electron measurement
- this measurement is the first operation of the HBD
- important detector for the measurement

Hadron Blind Detector (HBD)

- <u>electron identification</u>
- this analysis is the first time of physics measurement with HBD

0.01

 θ_0^{L}

20

10

30

40

50

60

70

80

90

HBD charge [p.e.]

100

Kyoto Univ. / JSPS / RIKEN **New Analysis Method** for the Single Electron HBB CAUSE RUNG gd dhribibion electron analysis with HBD e hbd charge dist. single e cluster merged cluster e w/ background hit clusters and merged clusters by superposition

- estimate the fractions of single e fitting HBD charge distribution
- reject merged clusters with HBD charge cut effectively

Yield of single electrons

er of Electron Yield of single electrons is estimated with this method established a new analysis method for single electron analysis 10^{3}

Check of Cross Section Spectrum

pp→(e⁺+e⁻)/2+X ∖s=200GeV Ed³σ/dp³ [mb×GeV⁻²c³] w/HBD 2009 result 10^{-1} this analysis) 2005 (PRL.97.252002) 2006 (preliminary) 10 10^{-5} w/o HBF (previous measurements) **PH**^{*}ENIX preliminary 10-7 10^{-8} 2 3 p_⊤ [GeV/c]

cross section of single electron production

- cross section of single electron production
 - good consistency with previous measurements
- different analysis method from previous measurements
 - converter & cocktail
 method for 2005 and
 2006 results

<u>confirmation of the reliability</u> of the analysis method with HBD

measurement of spin asymmetry of single electron production

Signal Occupancy: D

- the important value for the asymmetry measurement
- increase by about *factor of* 1.5 from previous measurements due to the HBD performance

Spin Asymmetry for Single Electron Production

spin asymmetry of single electron production

success of an approach to $\Delta g/g(x)$ by using the very clean channel

- $A_{LL}^{single e} (0.5 < p_T < 1.5 \text{ GeV/c}) = (3.1 \pm 5.5^{stat.} \pm 5.7^{syst.}) \times 10^{-3}$
- estimation of the constraint for $\Delta g/g(x)$ from the result is on going now

Summary

Summary

- Spin asymmetry of single electron production is an ideal probe to measure the gluon polarization in a proton.
- A new analysis method for the single electron with HBD is established and confirmed its reliability.
- The new method increases the "Signal Occupancy" by a factor of about 1.5 compared with previous measurements
- The approach to the ∆g/g(x) with the very clean channel is succeeded.
 - $A_{LL}^{single e} (0.5 < p_T < 1.5 \text{ GeV/c}) = (3.1 \pm 5.5^{stat.} \pm 5.2^{syst.}) \times 10^{-3}$

Future Prospect

- estimation of constraint on $\Delta g/g(x)$ from the result is on going now

Kyoto Univ. RIKEN

backup slides

Kyoto University GCOE Symposium

2012/2/13

Table of systematic errors

charge distribution of merged clusters (pi0_combined_events)

18

Spin Puzzle ~EMC measurement~

Symposium

polarized DIS measurement

$$g_1 \approx \frac{F_2}{2x(1+R)} A_1$$
$$g_1(x) = \frac{1}{2} \sum_q e_q^2 \Delta q(x)$$

- SLAC (1976, 1983)
- EMC (1988) _
 - quarks polarization is only 0.012±0.116±0.234 of the proton spin
 - (assuming Ellis-Jaffe sum rule)
- current quark polarization
 - ~ 25% of the proton spin (SIDIS)

2012/2/13

FIG. 3: Our polarized PDFs of the proton at $Q^2 = 10 \text{ GeV}^2$ Kyoto University GCOP the $\overline{\text{MS}}$ scheme, along with their $\Delta \chi^2 = 1$ uncertainty bands computed with Lagrange multipliers and the improved Hessian approach, as described in the text.

Generalized Parton Distribution (GPD)

GPD is all-inclusive distribution function of parton

- PDF: momentum distribution of parton
- FF: spatial distribution of parton
- spatial x momentum \rightarrow orbital angular momentum

definition:

$$\int \frac{d\lambda}{2\pi} e^{i\lambda x} \langle P' | \overline{\psi} (-\lambda n/2) \gamma^{\mu} \psi (\lambda n/2) | P \rangle = H(x, \Delta^{2}, \xi) \overline{\psi} (P') \gamma^{\mu} U(P) + E(x, \Delta^{2}, \xi) \overline{\psi} (P') \frac{i\sigma^{\mu\nu} \Delta_{\nu}}{2M} U(P) + \cdots$$

$$\int \frac{d\lambda}{2\pi} e^{i\lambda x} \langle P' | \overline{\psi} (-\lambda n/2) \gamma^{\mu} \gamma^{5} \psi (\lambda n/2) | P \rangle = \widetilde{H}(x, \Delta^{2}, \xi) \overline{\psi} (P') \gamma^{\mu} \gamma^{5} U(P) + \widetilde{E}(x, \Delta^{2}, \xi) \overline{\psi} (P') \frac{\gamma^{5} \Delta^{\mu}}{2M} U(P) + \cdots$$

$$I = \frac{Q^{2}}{2P \cdot q} \qquad \text{Bjorken x}$$

$$\Delta^{2} = -t = -(P'-P)^{2} \quad \text{Mandelstam-t} \\ ight-cone \quad \text{vector}$$

$$\xi = \pi \text{Symposium} \text{difference of longitudinal momentum}$$

Deeply Virtual Compton Scattering (DVCS)

22

Model-dependent constraints on J_u and J_d

- large model dependence
- cannot refer about quark angular momentum contribution for the proton spin yet

Figure 10. Model-dependent constraints on *u*-quark total angular momentum J_u vs *d*-quark total angular momentum J_d , obtained by comparing DVCS experimental results and theoretical calculations. The constraints based on the HERMES data for the TTSA amplitudes $A_{\rm UT}^{\sin(\phi-\phi_S)\cos\phi}$ and $A_{\rm UT,I}^{\sin(\phi-\phi_S)}$ use the double-distribution (HERMES DD) [32, 39] or dual-parameterisation (HERMES Dual) [49] GPD models. The additional band (JLab DD) is derived from the comparison of the double-distribution GPD model with neutron cross section data [55]. Also shown as small (overlapping) rectangles are results from lattice gauge theory by the QCDSF [52] and LHPC [47] collaborations, as well as a result for only the valence quark contribution (DFJK) based on zero-skewness GPDs extracted from nucleon form factor data [53, 54].

2012/2/13

charm quark fragmentation function

2012/2/13