GCOE symposium 13 Feb. 2012

Formation of Star-Planet Systems

Kazuyuki Omukai Physics II, Kyoto U.

Contents

• Molecular Clouds : Cradles of Stars

• Basics of Gravitational Instability

• Star-planet System formation from molecular cloud cores

Molecular Clouds: Cradles of Stars

© SciencePhotoLibrary, Mizuno et al.1995

Molecular Clouds: M~10³-10⁶ M_{sun} ; n ~100cm⁻³; T~10K

Molecular Cloud Cores

Taurus molecular cloud (¹³CO observation)

Mizuno+ (1995)

- molecular cloud $(10^{4-6}M_{sun}; >10^{2}cm^{-3})$
- molecular cloud core (1-10M_{sun}; >10⁴cm⁻³) =direct progenitor of a single /binary star(s).

Standard scenario of low-mass star formation

Established in 1980's

Shu, Adams & Lizano (1987)

A. Dense cores form within molecular clouds.

C. A stellar wind breaks out, creating a bipolar flow

B. A protostar forms at the center of a core, growing in mass by accretion of ambient matter.

D. The infall terminates, revealing a newly formed star with a disk.

© NAOJ

CHST

Molecular clouds in galaxies

- Molecular clouds (MCs) are distributed mainly along the spiral arms.
- MCs are presumably formed by gravitational instability due to compression by the spiral wave.

Basics of Gravitational Instability

Gravitational instability

Unstable if

Jeans criterion

$$k < k_J = \sqrt{4\pi G\rho} / c_s$$

$$\lambda > \lambda_J = 2\pi / k_J = c_s \sqrt{\pi/G\rho}$$

$$M > M_J = \rho \lambda_J^3 = \pi^{3/2} G^{-3/2} \rho^{-1/2} c_s^3$$

Linear perturbation of homogeneous gas

Problem of Jeans' analysis

max. growing mode k=0
 Global contraction of the cloud

$$(gravity) \sim \frac{GM}{L^2} \sim G\rho L$$

 $(pressure) \sim \frac{P}{\rho L} \sim \frac{cs^2}{L}$

 In larger scale, gravity becomes more and more important and so the collapse is faster.

This does not lead to fragmentation

Gravitational instability of sheets and filaments

- Perturbation with wavelength ~H grows fastest k_{max}~1/H~k_J
- •Fragmentation into Jeans scale pieces

From a molecular cloud to stars

Omnipresence of Filaments in MC

 Gravitationally bound cores form only in unstable filaments.

Andre et al. 2011

core mass function (CMF) and stellar initial mass function (IMF)

Mass distribution of dense cores resembles that of stars at their birth.

Fragmentation appears to set both CMF and IMF.

Andre et al. 2011

Gravitational collapse of dense cores and birth of protostars

• Molecular cloud core

=self-similar dynamical collapse \Rightarrow

• Formation of the first core @10¹¹cm⁻³

=dynamical collapse by H_2 dissociation \Rightarrow

Formation of the second core (=protostar)@10²²cm⁻³

Accretion evolution of a protostar

B. A protostar forms at the center of a core, growing in mass by accretion of ambient matter.

C. A stellar wind breaks out, creating a bipolar flow

D. The infall terminates, revealing a newly formed star with a disk.

- •The protostar grows in mass by accretion.
- •The mass of the star is fixed when the accretion terminates.
- •A circumstellar disk remains for a while → the formation site of planets.

Inutsuka + 2010

Standard scenario of Solar system formation : Kyoto Model

© E. Kokubo

Summary Big picture for the birth of star-planet systems

- Molecular clouds have filamentary structures.
- Filamentary clouds fragment to produce dense cores.
- A dense core collapses gravitationally to form a single/binary star system.
- The disks surrounding the stars eventually evolve to planetary systems.

Ward-Thompson & Whitworth 2011