Kyoto Univ. GCOE Symposium "Links among Hierarchies" Feb. 13-15, 2012

Computational Approach for Dynamics of Many-Fermion Systems

- from Nuclear Physics to Optical Science -

Kazuhiro Yabana

Center for Computational Sciences University of Tsukuba

Links among Hierarchies in Nuclear Physics

Combining particle physics, nuclear physics, and astrophysics by computation

- Origin of elements
- Evolution of the universe

Quantum dynamics of many-fermion systems

Nuclei

Atoms, molecules, solids electron many-body system Coulomb interaction

Computational Approach for Dynamics of Many-Fermion Systems:

 from Nuclear Physics to Optical Science - Large-scale computing has a high potential to link different hierarchies.

K-computer@Kobe

A number of concepts and methods on finite, quantum, fermion systems have been developed in nuclear physics.

Optical sciences developing as multi-disciplinary fields. In particular, nonlinear electron dynamics by intense and ultrashort laser pulses. Let me start to talk on

How I come to work on electron dynamics.

Quantum Simulation for Many-Fermion Systems: Nuclear Collision

Time-dependent Hartree-Fock theory. 3D time-dependent Schroedinger equation is solved with real-time and real-space method.

H. Flocard, S.E. Koonin, M.S. Weiss, Phys. Rev. 17(1978)1682.

17

THREE-DIMENSIONAL TIME-DEPENDENT HARTREE-FOCK...

FIG. 2. Contour lines of the density integrated over the coordinate normal to the scattering plane for an ${}^{16}O + {}^{16}O$ collision at $E_{1ab} = 105$ MeV and incident angular momentum $L = 13\hbar$. The times t are given in units of 10^{-22} sec.

Spatial grid 30x28x16, time step $4x10^2$

Time evolution of proton and neutron orbitals.

$$i\hbar \frac{\partial}{\partial t} \psi_i(\vec{r}, t) = h[n(\vec{r}, t)] \psi_i(\vec{r}, t)$$
$$n(\vec{r}, t) = \sum_i |\psi_i(\vec{r}, t)|^2$$
$$\psi(\vec{r}_1, \vec{r}_2, \cdots, \vec{r}_N, t) = A\{\psi_1(\vec{r}_1, t)\psi_2(\vec{r}_2, t)\cdots\psi_N(\vec{r}_N, t)\}$$

$^{24}O - {}^{16}O$ collision at E=16 MeV

Time: 10⁻²²s, Length: 10⁻¹⁴m

Crossover between nuclear physics and nanoscience: Atomic clusters

Synthesis of atomic clusters in cluster beam in the vacuum

- 1984: Discovery of magic numbers in metallic clusters Prediction of giant dipole resonance (soon observed)
- 1985: Discovery of fullerene C_{60} in cluster beam

(I was in graduate school during 1982-1987)

Abundance spectrum of Alkali metal clusters, electronic mean field and magic number

Metallic clusters: 2,8,20,40,58,92,138, ... Atomic nuclei: 2,8,20,28,50,82,126, ...

Nuclei

Finite Fermion Systems confined in spherical potential

Common properties

- Magic number
- Deformation
- Collective excitation

Metallic clusters

Optical absorption of atomic nuclei

Optical absorption spectrum of Li clusters

I participated in atomic cluster physics in 1992. There are a lot of interesting but "complex and difficult" problems.

- Different shape of absorption profiles Li₄₄₀ among alkali metals, Li, Na, K. Why? 200 1002 - Bulk concepts (e.g. dielectric function) effective for small systems? huleV σ (Ų) / How to describe optical response? 1500. - Hundred of electrons. K₄₄₀ - Roughly spherical but precisely having no symmetry. 1000 500 0 hv(eV)

σ (Ų)

Absorption spectrum (Mie plasmon) of Alkali-metal clusters, Li and K My answer was to combine - Nuclear time-dependent mean-field method – and - First-principles density-functional theory in condensed matter physics -

$$i\hbar \frac{\partial}{\partial t} \psi_i(t) = \{h_{KS}[\rho(t)] + V_{ext}(t)\} \psi_i(t)$$
$$\rho(t) = \sum_i |\psi_i(t)|^2$$

Electron density change from that in the ground state.

Optical absorption spectrum of Li_{147}^+

K. Y, G.F. Bertsch, Phys. Rev. B54, 4484 (1996).

The width comes from electron-atom elastic scattering (Landau damping)

Time-dependent mean-field theory

$$i\hbar \frac{\partial}{\partial t} \psi_i(t) = \{h_{KS}[\rho(t)] + V_{ext}(t)\}\psi_i(t)$$
$$\rho(t) = \sum_i |\psi_i(t)|^2$$

Single-particle dynamics in mean-field potential

- Protons and neutrons in nuclei
- Electrons in atoms, molecules, and solids

TDHF (Time-dependent Hartree-Fock) TDDFT (Time-dependent density-functional theory)

Universal tool for photoabsorption

Nuclei

Absorption spectra of molecules by real-time TDDFT

Molecules

Optical absorption spectrum is a linear response property (within perturbation theory). Next, on nonlinear fermion dynamics.

In low-energy nuclear physics, heavy-Ion collision has been the major phenomena of nonlinear nuclear dynamics.

Nuclear TDHF simulation

In optical sciences, intense laser pulse induces a variety of phenomena reflecting nonlinear electron dynamics.

Electron dynamics in solid, TDDFT simulation

Intense Laser Pulses: G. Mourou @ PIF2010

PIF2010 (International Conference on Physics in Intense Fields) (Nov. 24-26, 2010, KEK)

Intense and Ultrashort

 $10^{13}-10^{15}$ W/cm²

Intensity of applied laser pulse is comparable to electric field in matter which binds electrons. 10⁻¹⁵s (1 femto sec)

Pulse duration shorter than molecular vibration comparable to electron dynamics.

Nonlinear Electron Dynamics induced by intense and ultrashort laser pulse

Atoms:

High Harmonic Generation and Attosecond pulse generation

Molecules:

Tomographic imaging of molecular orbital by electron rescattering

Solids:

Nonthermal laser machining, formation of electron-hole plasma by intense and ultrashort pulse

FIG. 1. (a) Drilling of enamel (tooth) with conventional 1053 nm, nanosecond pulses (ablation threshold=30 J/cm² for τ_p =1.4 ns). (b) Same as in (a) but with the pulse duration reduced to the ultrashort regime (ablation threshold=3 J/cm² for τ_p =350 fs). In both cases, the laser spot size was 300 μ m. (c) cross section of hole made with 350 fs pulses.

Intense laser pulse propagation in solid requires undivided treatment of quantum mechanics and electromagnetism

Different length scales of light wavelength and atomic size requires multi-scale description

Theoretical description of light propagation in matter Electromagnetism and Quantum Mechanics

Maxwell equation	Constitutive relations	Schroedinger equation
$\vec{\nabla} \cdot \vec{B} = 0$	$\vec{D} = \vec{D} \left[\vec{E}, \vec{H} \right] \neq \varepsilon \vec{E}$	$i\hbar\frac{\partial}{\partial t}\psi_{i} = \frac{1}{2m}\left(-i\hbar\vec{\nabla} + \frac{e}{c}\vec{A}\right)^{2}\psi_{i} - e\phi\psi_{i}$
$\vec{\nabla} \times \vec{E} + \frac{\partial \vec{B}}{\partial t} = 0$	$\vec{B} = \vec{B} \left[\vec{E}, \vec{H} \right] \neq \mu \vec{H}$	$\vec{\nabla}^2 \phi = -4\pi \{en_{ion} - en_e\}$
$\vec{\nabla}\cdot\vec{D}=\rho$	/	Linear response (perturbation) theory
$\vec{\nabla} \times \vec{H} - \frac{\partial \vec{D}}{\partial t} = \vec{j}$		$\varepsilon(\omega), \mu(\omega)$
$\mathbf{\Gamma}$ = \mathbf{r} = \mathbf{r} = 1 = 1 = 1 = 1 = 1		

For extremely intense field, we need to solve coupled Maxwell + Schroedinger equations Two spatial scales, light wavelength [µm] and electron dynamics [nm]

Microscopic Electron dynamics in crystalline Si under spatially uniform, time-dependent electric field

Time-dependent Bloch orbitals, an extension of band-theory for electron dynamics

G.F. Bertsch, J.-I. Iwata, A. Rubio, K. Y., Phys. Rev. B62, 7998 (2000).

Coupled Maxwell + TDDFT multi-scale simulation

K. Y., T. Sugiyama, Y. Shinohara, T. Otobe, G.F. Bertsch, Phys. Rev. B85, 045134 (2012).

Two coordinates: Macroscopic and microscopic

Macroscopic grids for Z (µm scale) to calculate propagation of vector potential

$$\frac{1}{c^2}\frac{\partial^2}{\partial t^2}A_Z(t) - \frac{\partial^2}{\partial Z^2}A_Z(t) = \frac{4\pi}{c}J_Z(t)$$

$$J_{Z}(t)$$

 $A_{\rm Z}(t)$

Coupled by macroscopic vector potential and current averaged over unit cell volume

$$J(Z,t) = \int_{\Omega} d\vec{r} \, \vec{j}_{e,Z}$$
$$\vec{j}_{e,Z} = \frac{\hbar}{2mi} \sum_{i} \left(\psi_{i,Z}^* \vec{\nabla} \, \psi_{i,Z} - \psi_{i,Z} \vec{\nabla} \, \psi_{i,Z}^* \right) - \frac{e}{4\pi c} n_{e,Z} \vec{A}$$

Electron orbitals: $\psi_{i,Z}(\vec{r},t)$

At each macroscopic grid point Z, we consider Kohn-Sham orbital with microscopic grids (nm) to describe electron dynamics

$$i\hbar\frac{\partial}{\partial t}\psi_{i,Z} = \frac{1}{2m}\left(-i\hbar\vec{\nabla} + \frac{e}{c}\vec{A}_{Z}(t)\right)^{2}\psi_{i,Z} - e\phi_{Z}\psi_{i,Z} + \frac{\delta E_{xc}}{\delta n}\psi_{i,Z}$$
$$\vec{\nabla}^{2}\phi_{Z} = -4\pi\left\{en_{ion} - en_{e,Z}\right\}$$

Propagation of weak pulse

(Linear response regime, separate dynamics of electrons and E-M wave)

$I = 10^{10} W/cm^2$

More intense laser pulse Maxwell and TDKS equations no more separate.

 $I = 5 \times 10^{12} W/cm^2$

Reflectivity depends on laser intensity.

Interpretation by Drude model

Laser pulse excites electrons. Excited electrons behave metallic.

$$\varepsilon(n_{ph}) = \varepsilon_{GS} - \frac{4\pi e^2 n_{ph}}{m^*} \frac{1}{\omega(\omega + \frac{i}{\tau})}$$

 n_{ph} electron-hole density

au collision time

Time-dependent mean-field calculation includes collision effect !?

Summary

- Nuclear physics (has been and will) provide useful concepts/methods for new emergences in a variety of fields.
- Large scale computing has a high potential to link different hierarchies.
- I showed an example, the time-dependent mean-field theory
 - Universal tool for linear optical response
 - Maxwell / Schroedinger description for nonlinear electromagnetism (regarded as a new light source by computation after the laser, synchrotron radiation, XFEL, ...)

