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Liquid crystal 

n-4'-MethoxyBenzylidene-n-ButylAnilin (MBBA) 

orientational order  

and layering 
orientational order disorder  

(Liquid phase) 

isotropic nematic smectic 

Liquid crystals are intermediate phases 

between liquid and crystal.  

Typically, they are consisted of rod-like 

molecules. 
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Elasticity of nematic phase 
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Symmetry of Liquid crystal 
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In contrast to Heisenberg spins, there is no difference between 

head and tail of the director field in nematic phase. 
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Defects in liquid crystals 

Schlieren texture 
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defect core energy 

When incommensurate domains contact, topological defects are 

formed at the domain boundary 

 : angular coordinate 

: angle of director field 

s: the strength of the defect 
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Defects of nematic phase in 3D  
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Homotopy theory 

point defects Line defects  

(disclinations) 
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Topological Defects in other 

systems 
Cosmic strings 

Type II superconductors Dislocations in crystals 

Skyrmion 



Defects in liquid crystals 

A defect of s interacts with that of s’.  

Roughly, the strength of the 

interaction is proportional to ss’. 

(+,+) and (-,-)  : repulsive 

(+,-)  : attractive 

A line defect has a tension in 3D.  

It tends to be shrunken.  

Analogous to electrostatic interaction 
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In bulk, defects of nematic 

phase are not long-lived 

 

A defect of the topological 

charge s is annihilated 

with other one of s  

1s 0s

Annihilation of defects 

electron-positron 

annihilation 
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Simulations of nematic ordering 
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Anchoring interaction 



nematic liquid crystal 

solid wall 

Director field is aligned at 

solid surface with tilt angle  

90
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homeotropic 
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Confinement effect 

The effect of the anchoring interaction can reach far 

from the surface owing to the long-ranged elasticity.  

In between parallel flat walls, the director field can be  

aligned uniformly. 

For homeotropic anchoring 



Liquid crystal and solid objects 

particles (colloids) 
porous media 

nematic liquid crystal 

The inclusion of solid objects imposes the formation of defect 

in liquid crystals 

(Phys. Rev. Lett. 97, 127801 (2006)) (Nature Materials 10, 303 (2011)) 



Topology of an object 
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D.L. Stein, Phys. Rev. A 19, 1708 (1979) 
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A spherical particle with 

homeotropic surface 
A point defect of s1 

A ring defect of s1/2 

radial hyperbolic 

T. C. Lubensky et al., Phys. Rev. E 57, 610  (1998) 

The sum of topological charges in the system should be conserved.  

Conservation of the total 

topological charges 

hedgehog 

(dipole) 

Satrun-ring 

(quadruple) 



Interaction among particles in LC 

Non-interacting particles can interact to others via a 

nematic solvent, so as to reduce the elastic energy.  

J. Fukuda et al. Euro. Phys. J. E. 13. 87 (2004) P. Poulin et al. Science 275, 1770 (1997). 

+1 

-1 

hedgehog 

(dipole) 
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Interaction among particles in 

nematic solvents 
(a) (b)
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A particle with a Saturn-ring defect has a quadruple symmetry. 

Thus, particles are interacting in a quadruple manner. 

Zig-zag chain-like aggregate 

R. W. Ruhwandl and E. M. Terentjev, Phys. Rev. E 55, 2958 (1997) 

K. Kita et al.,  
Phys. Rev. E 77, 041702 (2008) 



(a) (b)

We found a new type of defect around a pair of particles.  

It cannot be described by an argument based on the quadruple symmetry.  

Defect shared by two particle has figure-of-eight structure and binds 

particles strongly.  

Topological arrest of particles by a single stroke disclination line 

Interaction among particles in 

nematic solvents 

T. Araki and H. Tanaka, Phys. Rev. Lett. 97, 127801 (2006) 



Topology of defect structure 
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A Saturn-ring defect 

Topologically arrested structure 
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Interaction mediated by defects 

non-additive, non-linear, non-ergodic 

TkB

310~

The effective interaction depends on 

the topology of the defects, so that it 

is not described by a potential 



I. Musevic et al. Science 313, 5789 (2006) 

Self-assembly by topological 

defects 

cTT  cTT 

5CB+ PMMA beads (49%) 

T. A. Wood et al, Science 334, 79 (2011) 



Nematic liquid crystal  porous media(PM) 

Nematic liquid crystal in porous 
media 

They show interesting behaviors due to the topological constraints of the 

defects. And they provide promising properties for optical devices.  

 
G. P. Crawford and S. Zumer, Liquid Crystals in Complex Geomerty (1996),  

X. Wu et al., Phys. Rev. Lett. 69, 470 (1992).  

T. Bellini, Phys. Rev. Lett. 88, 245506 (2002).  
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Nematic liquid crystal in a simple cell 
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Only a unique direction is recorded in a simple cell. 
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Memory effects 

experiments (5CB in millipore filter (3mm) and silica gel (0.8mm)) 

E=1.25V/mm 

T. Araki et al.,Nature Materials 10, 303 (2011) 
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Since energy barriers between them are higher than the thermal energy, 

each configuration is trapped at one of the minima.  

The systems show non-ergodic glassy behaviors 

 (analogous to spin-glass) 

 

The effect of the porous media is studied by introducing  

randomness of the interaction or  

point –like quenched impurities 

 

 
Theory:   A. Maritan et al. Phys. Rev. Lett. 72, 4113 (1994),  

  L. Petridis and E. M. Terentjev, Phys. Rev. E 74, 051707 (2006).  

Simulation:  T. Bellini et al. Phys. Rev. Lett. 88, 245506 (2002).   

  T.  Bellini et al., Phys. Rev. Lett. 85, 1008 (2000) 

  J. Ilnytskyi et al., Phys. Rev. E 59, 4161 (1999).  

Experiment:  

  G. S. Iannacchione et al. Phys. Rev. Lett. 71, 2595 (1993) 

  X. Wu et al., Phys. Rev. Lett. 69, 470 (1992).  

Nematic liquid crystal in porous 

media 



The key point of our study is to deal with the structure of porous 

media more realistically.  

 

This introduces the two important effects of the confinement.  

 

1. topological constraint  

2. surface anchoring 

Nematic liquid crystal in porous 

media 
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Induced and remnant nematic orders 
simulations 

experiments (5CB in millipore filter (3mm) and silica gel (0.8mm)) 

E=1.25V/mm 
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Since all the channels do not necessarily have 

disclination lines running through them, many 

metastable configurations can be found.  

 

The defect configurations are long-lived since the 

energy barriers connecting them are much higher 

than thermal fluctuations.  

 

This results in non-ergodic glassy behaviors, 

analogous to a spin glass.  

Defect structure of nematic liquid 
crystal in porous media 

defect structures for different 

simulations of the same condition 

The number of the possible configurations is estimated as,  2/1)1( p

p average number of arms at nodes, typically  



63p

Euler characteristic (topological invariant) KdS



2

1

~101000000   for 1 mm cell of 1mm pores ! 



A strong field melts the defect structure and  

the topology of defect structure can be changed.  

The new topology is conserved even after the field is switched off!  

E=0.3 

E=1.0 

Transformation of defect structure 

by an external field 

Q(t) 

t(105MCC) 

Before the quench under an electric field after the application 



NLC in regular porous materials 

The defect structure 

is also regular in 

ordered porous 

media. 



Relaxation of memorized order 
Random porous medium (PPM) Bicontinuous cubic (BC) 

In BC, only a single relaxation mode is observed.  

After the fast mode, the second slow relaxation appears in RPM.  
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BC: single stretched exponential decay 

RPM: stretched exponential decay and logarithmic decay 
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Logarithmic decay for 

superconductor:  

 
P. W. Anderson, Phys. Rev. 

Lett. 9, 309 (1962) 

Y. B. Kim et al., Phys. Rev. 

Lett. 9, 306 (1962) 



Fast relaxation mode 
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In the both type of porous media, the fast relaxation mode represents the 

recovery of the distorted director field owing to the elasticity.  

 

In this fast process, the topology of the defect structure does not change.  
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The second slow relaxation in RPM 
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The topological change of the 

defect structure in RPM 

At T=0.1 for l=43.9 
The second slow relaxation accompanies the change of the 

topology of the defect structure. 



In a subunit of the volume l3, the elastic 

energy density is estimated as  
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Thus, the stored elastic energy in this 

small volume is 

The energy barrier against the topological 

change is also scaled as Kl 
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The topological change of the 

defect structure in RPM 



Defect pattern in a regular matrix 

In a regular matrix, the defect structure reaches one of the most stable 

configuration after the fast mode. Then, the second mode is absent. 
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T and l - dependences of the 

remnant orders 
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RPM: 

In a regular matrix, the remnant order appears to be independent of the pore size.  

This is consistent with the scaling argument for the strong anchoring case.  

In an irregular matrix, the remnant depends apparently on the mean pore 

size because of its non-ergodic glassy behavior. 
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Relaxations without 

reconfigurations of defects 



Roles of the connectivity of topological 
defects 

Topologically locked defect 

Topologically free defect 

Changes of the director pattern in a bicontinuous medium should accompany 

reconfiguration of the defects.  

Such changes ares strongly suppressed because the energy barrier for them is 

very high (~103 kBT) 



Similarity and difference 
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Interaction mediated by disclinations 

depends on the topology of the defects 

(free) energy 

Interaction potential (in the far field) 
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003.0zF 004.0zF 005.0zF

Flow directed along the director field 

If an intermediate force is applied (0.003<=Fz<=0.004), the unlocked defect rings 

move along the flow.  When the moving distance reaches to be comparable to 

the pore unit length, the defect disappears and a new defect is created almost 

at the original position. This cycle is repeated with frequency proportional to the 

flow speed.  

 
When a strong flow is imposed, the locked defects are also destroyed.  



We numerically study roles of connectivity of topological defects  

of nematic liquid crystals in complex geometries.  

 

When a nematic liquid crystal is confined in a porous medium or contains 

solid objects as a host liquid, coupling of the director to the solid surface 

may easily conflict with the symmetry of the ordered phase and thus lead 

to frustration and topological defects.  

 

Reflecting the topology of space filled with a nematic liquid crystal, there  

remain many defects with a large number of possible configurations.  

Since there exist energy barriers much higher than the thermal  

energy among the meta-stable defect configurations, reorganization  

of the director field with accompanying the topological changes of  

the defects is strongly suppressed.   

 

Such suppressed reorganization leads to interesting non-ergodic  

behaviors in nematic liquid crystals.  

Summary 



The origin of the logarithmic 

slow decay 
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The rate of the change in the remnant order is assumed to be 

Assuming the change in QM is through that in U, we obtain 

The simplest expression for the barrier is linearly decreasing function of QM  

P. W. Anderson, Phys. Rev. Lett. 9, 309 (1962) 

Y. B. Kim et al., Phys. Rev. Lett. 9, 306 (1962) 



inverted FCC sphere array FCC sphere array random pores 

SC sphere array bicontinuous cubic 

Memory effect of nematic liquid 

crystal in porous media 
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Effect of flow on the director field in 
porous media 

T. Araki, in preparation  

Lattice Boltzmann simulation of nematohydrodynamics in complex geometry 

 
C. M. Care et al., Phys. Rev. E. 67, 061703 (2003).  

C. Denniston et al., Europhys. Lett. 52, 481 (2000).  

S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond (2001) 
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Flow directed along the director field 

For a weak external stress (Fz<=0.002), the disclination lines are slightly distorted 

without topological changes.   

 



Flow directed along the director field 



There remains two types of defect rings. 

 

Half of the disclination lines with s1/2 encircle the 

neck of the pores.  

Others (s1/2 ) are surrounded  

by neighboring nodes and necks.  

And they are aligned perpendicularly to the field. 

Defect structures in bicontinuous cubic 
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The total amount of the defect charges is related to Gaussian curvature 
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Flow perpendicular to the director field 
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A flow can also switch the 

memory of the director field! 

003.0xF

Flow perpendicular to the director field 



Flow perpendicular to the director field 


