

Emergent Nematic State in Iron-based Superconductors

S. Kasahara^{1,2},

H.J. Shi², K. Hashimoto², S. Tonegawa², Y. Mizukami²,
K. Sugimoto³, T. Fukuda⁴,
A. Nevidomskyy⁵,
T. Terashima¹, T. Shibauchi², Y. Matsuda²

Research Center for Low Temperature & Materials Sciences, Kyoto University
 Department of Physics, Kyoto University
 Japan Synchrotron Radiation Research Institute, SPring-8
 Quantum Beam Science Directorate, JAEA SPring-8
 Department of Physics and Astronomy, Rice University,

Outline

*Introduction:

High Temperature Superconductivity in Fe-pnictides & Possible Nematic State in This Class of Materials

*Experimental

Magnetic Torque Measurements Single Crystalline Synchrotron XRD

***Results & Discussion**

Evidence for the Electronic Nematic State

*Summary

Superconductivity in Fe-Pnictides — Discovery

The Second Generation Materials of High-T_c Superconductivity

> H. Takahashi *et al*., Nature **453**, 376 (2008).

Superconductivity in Fe-Pnictides — Family

Superconductivity in Fe-Pnictides — Family

Phase Diagram

Parent compounds

Structural transition (T_s) & AFM transition (T_N)

The magneto-structural transition is suppressed by doping or applying pressure. **Superconductivity in a close proximity to magneto-structural order.**

Phase Diagram

The magneto-structural transition is suppressed by doping or pressure. Superconductivity in a close proximity to magneto-structural order.

Phase Diagram

Parent compounds

Structural transition (T_s) & AFM transition (T_N)

Theoretical approach: Itinerant Picture

Fermi Surface

Five-fold degenerate Fe 3*d* orbitals participate: XZ/YZ, XY, 3Z²-R², X²-Y²

Multiband electronic structure with well-separated hole and electron sheets

D.J. Singh and M.H. Du, Phys. Rev. Lett. **100**, 237003 (2008).

K. Kuroki *et al.*, New J. Phys. **11**, 025017 (2009).

Theoretical approach: Localized Picture

Frustration between J1 and J2 and its removal by orbital ordering

Lv et al., PRB **80**, 224506 (2009). PRB **82**, 045125 (2010).

Broken Rotational Symmetry

Electronic Nematic State

E. Fradkin et al., Science 327, 155 (2010).

Chen et al., PRB 80, 180418(R) (2009).

Nematic & Smectic in Liquid Crystals (Wikipedia)

Experiments Suggesting the Electronic Nematic State

in detwinned crystals.

Questions on the Electronic Nematic State

- 1. Intrinsic?
- 2. Thermodynamic phase?
- 3. Connections to the Magneto-Structural transition and Superconductivity?

Ultra-Precise Torque Magnetometry & Single Crystalline Synchrotron XRD

Field Rotation within the *ac*-plane $\tau_{2\theta} = \frac{1}{2}\mu_0 H^2 V \Delta \chi_{ca} \sin 2\theta$

Direct probe of the In-plane Anisotropy without detwining

Vector magnet and mechanical rotator system

We can rotate *H* continuously within the *ab* plane with a misalignment less than 0.02 deg.

Experiment 2: Single Crystalline Synchrotron XRD

BL02B1

Experiment 2: Single Crystalline Synchrotron XRD

BL02B1

Equipped with a large cylindrical image-plate camera (350 mm x 683 mm)

Higher order peaks $(7\ 7\ 0)_T$ or $(8\ 8\ 0)_T$

 $-60 \deg < 2\theta < 145 \deg$

Sensitive experiments to the orthorhombic distortions.

 2θ values:

System: $BaFe_2(As_{1-x}P_x)_2$

