Infinite dimensional symmetries in the AdS/CFT correspondence

lo Kawaguchi

Particle Physics Group, Department of Physics, Kyoto University

1

@ GCOE Symposium – Links among Hierarchies Feb. 15, 2012

Introduction

In string theory, fundamental objects are not point particles (0-dim.) but strings (1-dim.).

Two kinds of strings are contained, open strings and closed strings.

A single string can represent various particles as oscillating modes.

open string \rightarrow gauge boson, closed string \rightarrow graviton

A remarkable feature

Gauge and gravitational theories are naturally unified in string theory.

Dualities between gauge and gravitational theories are realized.

EXmatrix models[Banks, Fischler, Shenker, Susskind, 1996;
Ishibashi, Kawai, Kitazawa, Tsuchiya, 1996]matrix string[Dijkgraaf, Verlinde, Verlinde, 1997]gauge/gravity duality[Maldacena, 1997; etc.]

The subject in this talk

AdS/CFT can be applied to investigate strongly coupled dynamics in quantum field theories.

EX Hadron spectrum in QCD, shear viscosity in fluid dynamics [Sakai-Sugimoto, 2004; Kovtun- Son-Starinets, 2004]

Question

What is the structure behind AdS/CFT to work?

The integrable structure is considered to ensure the duality.

Universality classes of classical integrable models

An integrable model is characterized by an infinite dim. symmetry.

3D AdS is considered here for simplicity:

String theory on AdS₃

Isometry of AdS_3 : $SL(2,R)_L \times SL(2,R)_R$

Classical integrable structure of string theory on AdS₃:

Global symmetries	SL(2,R) _L	SL(2,R) _R
Hidden symmetries	Yangian	Yangian
Class	rational	rational

cf. classical integrable structure of sigma model on S³. [Luscher, Pohlmeyer, 1978; Drinfel'd, 1985; Bernard, 1991; Mackay, 1992; etc.] String theory on warped AdS₃

We will consider classical integrable structure of string theory on warped AdS_3 .

Classical integrable structure of string theory on warped AdS₃

Global symmetries	SL(2,R) _L	U(1) _R
Hidden symmetries	Yangian	quantum affine
Class	rational	trigonometric

I.K., K.Yoshida, JHEP 1011,32(2010) I.K., K.Yoshida, Phys.Lett.B705,251(2011)

I.K., T.Matsumoto, K.Yoshida, 1201.3058

Cherednik, Theor.Math.Phys.47,422(1981); Faddeev, Reshetikhin, Ann.Phys,167,227(1986); etc.

Hybrid integrable structure

- String on warped AdS₃ belongs to two different classes.
- Non-local map between two classes

trigonometric = composite of two rationals

- The analysis here is applicable to 3D Schrodinger spacetime.
- Schrodinger spacetime appears in applications of AdS/CFT to non-relativistic conformal field theories.
- Schrodinger-like spin chain leads to non-hermite Hamiltonian.

Global symmetries	SL(2,R) _L	U(1) _R
Hidden symmetries	Yangian	????
Class	rational	non-standard deformed rational

Summary

- The integrable structure is important for AdS/CFT.
- String theory on warped AdS_3 has a hybrid integrable structure. Yangian (rational) and quantum affine (trigonometric)
- A similar analysis is applicable to 3D Schrodinger spacetime.

Hybrid integrable structure

trigonometric = composite of two rationals

Warped AdS_3 would be described as a composite of two AdS_3 .

Warped AdS₃/ dipole CFT₂ correspondence (as a toy model of Kerr/CFT)

[El-Showk, Guica, 1108.6091; Song, Strominger, 1109.0544]

Can it be described as a composite of AdS_3/CFT_2 ?

The hidden structure behind Kerr/CFT?

Thank you for your attention

Back up

warped AdS₃

Definition of AdS₃:

$$ds^{2} = -(dX^{0})^{2} + (dX^{1})^{2} + (dX^{2})^{2} - (dX^{3})^{2}$$
$$-(X^{0})^{2} + (X^{1})^{2} + (X^{2})^{2} - (X^{3})^{2} = -L^{2}$$

Solve the constraint and introduce angle variables:

$$X^{0} + iX^{3} = Le^{-i\tau/2} \left[\cosh\frac{u}{2}\cosh\frac{\sigma}{2} + i\sinh\frac{u}{2}\sinh\frac{\sigma}{2} \right]$$
$$X^{1} + iX^{2} = Le^{i\tau/2} \left[-\cosh\frac{u}{2}\sinh\frac{\sigma}{2} - i\sinh\frac{u}{2}\cosh\frac{\sigma}{2} \right]$$

Hopf fiber representation of
$$AdS_3$$

$$ds^2 = \frac{L^2}{4} \left[-\cosh^2 \sigma d\tau^2 + d\sigma^2 + (du + \sinh \sigma d\tau)^2 \right]$$

$$ds^{2} = \frac{L^{2}}{4} \left[-\cosh^{2}\sigma d\tau^{2} + d\sigma^{2} + (du + \sinh\sigma d\tau)^{2} \right]$$

one-parameter deformation

$$ds^{2} = \frac{L^{2}}{4} \left[-\cosh^{2}\sigma d\tau^{2} + d\sigma^{2} + (1+C)(du + \sinh\sigma d\tau)^{2} \right]$$

AdS₂
SL(2,R)_L
SL(2,R)_L
U(1)_R

This is known as spacelike warped AdS₃.

There is also timelike warped AdS_3 .

$$ds^2 = \frac{L^2}{4} \left[\cosh^2 \sigma du^2 + d\sigma^2 - (1+C)(d\tau - \sinh \sigma du)^2 \right]$$

Yangian algebra

$$\left\{ \begin{aligned} Q^{a}_{(0)}, Q^{b}_{(0)} \right\}_{\mathrm{P}} &= \varepsilon^{ab}_{\ c} Q^{c}_{(0)} ,\\ \left\{ Q^{a}_{(0)}, Q^{b}_{(1)} \right\}_{\mathrm{P}} &= \varepsilon^{ab}_{\ c} Q^{c}_{(1)} ,\\ \left\{ Q^{a}_{(1)}, Q^{b}_{(1)} \right\}_{\mathrm{P}} &= \varepsilon^{ab}_{\ c} \left[Q^{c}_{(2)} + \frac{1}{12} \left(Q_{(0)} \right)^{2} Q^{c}_{(0)} \right] , \end{aligned} \right.$$

Serre relation

$$\left\{ \left\{ Q_{(1)}^{a}, Q_{(1)}^{b} \right\}_{\mathcal{P}}, \left\{ Q_{(0)}^{c}, Q_{(0)}^{d} \right\}_{\mathcal{P}} \right\}_{\mathcal{P}} + \left((a, b) \leftrightarrow (c, d) \right) \right)$$

$$= \frac{1}{4} \varepsilon^{a}{}_{ei} \varepsilon^{b}{}_{fj} \varepsilon^{h}{}_{gk} \varepsilon^{ijk} \varepsilon^{cd}{}_{h} Q_{(0)}^{\{e}, Q_{(0)}^{f}, Q_{(1)}^{g\}} + \left((a, b) \leftrightarrow (c, d) \right) \right)$$

Quantum affine algebra

$$\left\{ Q^{R,+}, Q^{R,-} \right\}_{\mathcal{P}} = -i \frac{q^{Q^{R,3}} - q^{-Q^{R,3}}}{q - q^{-1}}, \\ \left\{ \widetilde{Q}^{R,+}, \widetilde{Q}^{R,-} \right\}_{\mathcal{P}} = -i \frac{q^{\widetilde{Q}^{R,3}} - q^{-\widetilde{Q}^{R,3}}}{q - q^{-1}},$$

$$\left\{ Q^{R,3}, Q^{R,\pm} \right\}_{\mathcal{P}} = \mp i Q^{R,\pm} , \quad \left\{ \widetilde{Q}^{R,3}, \widetilde{Q}^{R,\pm} \right\}_{\mathcal{P}} = \mp i \widetilde{Q}^{R,\pm} ,$$
$$\left\{ Q^{R,3}, \widetilde{Q}^{R,\pm} \right\}_{\mathcal{P}} = \pm i \widetilde{Q}^{R,\pm} , \quad \left\{ \widetilde{Q}^{R,3}, Q^{R,\pm} \right\}_{\mathcal{P}} = \pm i Q^{R,\pm} ,$$

q-Serre relations

$$\left\{ Q^{R,\pm}, \left\{ Q^{R,\pm}, \left\{ Q^{R,\pm}, \tilde{Q}^{R,\pm} \right\}_{\mathrm{P}} \right\}_{\mathrm{P}} \right\}_{\mathrm{P}} \right\}_{\mathrm{P}} = -\gamma^{2} \left\{ Q^{R,\pm}, \tilde{Q}^{R,\pm} \right\}_{\mathrm{P}} \left(Q^{R,\pm} \right)^{2},$$

$$\left\{ \tilde{Q}^{R,\pm}, \left\{ \tilde{Q}^{R,\pm}, \left\{ \tilde{Q}^{R,\pm}, Q^{R,\pm} \right\}_{\mathrm{P}} \right\}_{\mathrm{P}} \right\}_{\mathrm{P}} \right\}_{\mathrm{P}} = -\gamma^{2} \left\{ \tilde{Q}^{R,\pm}, Q^{R,\pm} \right\}_{\mathrm{P}} \left(\tilde{Q}^{R,\pm} \right)^{2},$$