Hadron resonances in three-body systems made of Kaons

Alberto Martínez Torres GCOE symposium 2012

Introduction

- The study of systems made by mesons and baryons is one of the challenging issues in nuclear physics.
- The use of effective chiral Lagrangians has been very useful in understanding of the properties of several meson and baryon states.

¹ J. A. Oller, Ulf-G. Meissner, Phys. Lett. B 500 (2001) 263-272; D. Jido, J. A. Oller, E. Oset, A. Ramos, U. G. Meissner, Nucl. Phys. A 725,181-200 (2003).
 ² J. A. Oller, E. Oset, Nucl. Phys. A 620 (1997) 438 ; J. A. Oller, E. Oset, J. R. Peláez, Phys. Rev. D 59 074001 (1999).
 ³ J. Nieves, E. Ruiz Arriola, Phys.Rev. D64,116008 (2001); C. Garcia-Recio, J. Nieves, E. Ruiz Arriola, Phys.Rev.D67, 076009 (2003).

Interest in few-body systems formed by one or more kaons

Quasibound state (20-70 MeV) with large width (70-100 MeV)

New N* 1/2+ around 1910 MeV

Very weakly bound state

 ⁴ Y. Ikeda and T. Sato, Phys. Rev. C 76, 035203 (2007); N.V. Shevchenko, A. Gal and J. Mares, Phys. Rev. Lett. 98, 082301 (2007); A. Dote, T. Hyodo and W. Weise, Nucl. Phys. A 804, 197 (2008); Y. Ikeda and T. Sato, Phys. Rev. C 79, 035201 (2009).
 ⁵D. Jido and Y. Kanada-En'yo, Phys. Rev. C 78, 035203 (2008).⁶ Y. Kanada-En'yo and D. Jido, Phys. Rev. C 78, 025212 (2008). Most peculiars:

 $\Lambda(1405) \longrightarrow$ Double pole nature N*(1910) \longrightarrow Simultaneous presence of the $\Lambda(1405)$ and $a_0(980)$

We have studied the following systems

The Model

We solve the Faddeev equations

$$T = T^1 + T^2 + T^3$$

$$T^i = t^i + t^i G[T^j + T^k]$$

The Model

t =

We solve the Faddeev equations

$$T = T^1 + T^2 + T^3$$

$$T^{i} = t^{i} + t^{i}G[T^{j} + T^{k}]$$

$$V + Vgt$$

Results

We consider as coupled channels:

- $K\bar{K}N, K\pi\Sigma, K\pi\Lambda$
- $KK\bar{K}, K\pi\pi, K\pi\eta$
- $K\bar{K}\pi,\eta\pi\pi$

All the interactions are in s-wave.

We can use now these amplitudes to study systems like $f_0(980)\pi\pi, f_0(980)K\bar{K}$

How to do this?

 $T_{P_1(P_2P_3)}(\sqrt{s},\sqrt{s_{23}} \simeq M_{R_{23}}) = g_{R_{23}\to(P_2P_3)}G_{R_{23}}t_{P_1R_{23}}(\sqrt{s})G_{R_{23}}g_{R_{23}\to(P_2P_3)}$

$$t_{(P_2P_3)}(\sqrt{s_{23}}) = \frac{g_{R_{23}\to(P_2P_3)}^2}{s_{23} - M_{R_{23}}^2 + iM_{R_{23}}\Gamma_{R_{23}}}$$

 $t_{P_1R_{23}}(\sqrt{s}) = \frac{iM_{R_{23}}\Gamma_{R_{23}}}{t_{(P_2P_3)}(\sqrt{s_{23}} = M_{R_{23}})}T_{P_1(P_2P_3)}(\sqrt{s}, \sqrt{s_{23}} = M_{R_{23}})$

• Decay modes: $\pi\pi, \pi\pi\pi\pi, \pi\pi KK$

$f_0(1790)$ found by BES Collaboration.⁶

⁶ M.Ablikim et al. [BES Collaboration], Phys. Lett. B607, 243-253 (2005). J. Z. Bai, et al. [BES Collaboration], Phys. Lett. B472, 207 (2000). A.V. Anisovich et al., Phys. Lett. B449 (1999) 154. D.V. Bugg, et al., Phys. Lett. B353, 378 (1995).

Conclusions

We have solved the Faddeev equations using unitary chiral dynamics to determine the input two-body t-matrices.

We have studied several systems made of Kaons, like $K\bar{K}N, KK\bar{K}, \pi\pi\bar{K}, f_0(980)\pi\pi$

And we have found generation of several states

 $N^*(1910)(1/2^+), K(1460), \pi(1300), f_0(1790)$