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Introduction
The study of systems made by mesons and baryons is one of 
the challenging issues in nuclear physics.
The use of effective chiral Lagrangians has been very useful in 
understanding of the properties of several meson and baryon 
states.

       
       NK̄

       
       ⇡ ⌃

!(1405)

       
       ̄K K       

       ⇡ ⇡
       

       ⇡ ⌘

"(600), f0(980), a0(980)
1 J. A. Oller, Ulf-G. Meissner, Phys. Lett. B 500 (2001) 263-272; D. Jido, J. A. Oller, E. Oset, A. Ramos, U. G. Meissner, Nucl. Phys. A 725,181-200 (2003).
2 J. A. Oller, E. Oset, Nucl. Phys. A 620 (1997) 438 ; J. A. Oller, E. Oset, J. R. Peláez, Phys. Rev. D 59 074001 (1999).                                  
3 J. Nieves, E. Ruiz Arriola, Phys.Rev. D64,116008 (2001); C. Garcia-Recio, J. Nieves, E. Ruiz Arriola, Phys.Rev.D67, 076009 (2003).



Interest in few-body systems formed by one or more kaons 
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Most peculiars:

!(1405) Double pole nature

N*(1910) Simultaneous presence
of the !(1405) and a0(980)
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We have studied the following systems
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We solve the Faddeev equations

T = T 1 + T 2 + T 3

The Model

T i = ti + tiG[T j + T k]



We solve the Faddeev equations

T = T 1 + T 2 + T 3

The Model

T i = ti + tiG[T j + T k]

t = V + V gt



We consider as coupled channels:

All the interactions are in s-wave.

Results

KK̄N,K�⇥,K��
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FIG. 1. Contour plots of the three-body squared amplitude |TR|2 for
the N∗ resonance in the KK̄N system as functions of the total three-
body energy,

√
s, and the invariant mass of the K̄N subsystem with

IK̄N = 0 (upper panel) or the invariant mass of the K̄K subsystem
with IK̄K = 1 (lower panel).

squared amplitude is obtained around
√
s ∼ 1922 MeV when

the K̄N subsystem in isospin zero has an invariant mass close
to 1428 MeV. In the lower panel, the peak shows up when the
invariant mass of the KK̄ subsystem is around 987 MeV.

We also find the N∗ resonance at the same value of
√
s in

the TR matrices for different isospin combinations of the K̄N
and K̄K subsystems. For the case in which the K̄N sub-
system is in isospin 1, IK̄N = 1, the (TKK̄N

R )(I=1/2,IK̄N=1)

matrix shows a less pronounced peak structure for the N∗,
due to the fact that the projected TR matrix on IK̄N = 1 has
tiny contributions of the Λ(1405) in the intermediate states.
The ratio of the |TR|2 matrices with IK̄N = 1 and IK̄N = 0
at the resonance point, (

√
s,
√
sK̄N ) = (1923, 1428) MeV, is

found to be a tiny value, ∼ 0.008. Also, for the K̄K sub-
system, the ratio of |TR|2 with IK̄K = 0 and IK̄K = 1
at (

√
s,
√
sK̄K) = (1923, 987) MeV is ∼ 1. Although the

magnitude for these two matrix elements with IK̄K = 0 and
IK̄K = 1 is very similar, it does not mean that the fraction
of the IK̄K = 0 and IK̄K = 1 components in the N∗ state is
similar, since this fraction depend on the isospin configuration
of the K̄N subsystem. Group theory tells us that, in case the
K̄N subsystem has purely IK̄N = 0, the ratio of the IK̄K = 1
and IK̄K = 0 components is 3 to 1 for total I = 1/2. Since, in
the present case, the K̄N pair dominantly has IK̄N = 0, the
IK̄K = 1 component is favored in the N∗ state. This implies
that the N∗ resonance contains mostly a0(980) in the K̄K
subsystem with IK̄K = 1 and less contribution from f0(980)
with IK̄K = 0. The attraction in the KK̄ and K̄N subsys-
tems is strong enough to compensate the repulsion in the KN
subsystem and form a bound state.

It is well known that the K̄N interaction and coupled chan-
nels generate the Λ(1405) state, with a double pole structure

    


   
 

FIG. 2. Dashed Lines: (Left) Kπ → Kπ t matrix with isospin
1/2. The κ resonance is generated around 850 MeV. (Right) t matrix
for the KΣ → KΣ transition with isospin 1/2, which shows the
presence of the N∗(1535). Solid line: Energy range used in the
three-body calculation for the Kπ interaction (Left) and for the KΣ
interaction (Right). The units are arbitrary.

[29]: there is a pole around 1390 MeV, which couples strongly
to πΣ, and another one around 1426 MeV, which couples
dominantly to K̄N . Similarly, the KK̄ interaction and cou-
pled channels generate the σ(600), f0(980), and a0(980) res-
onances [36, 37]. Therefore, the fact that the peak of the
three-body TR matrix around 1920 MeV gets generated when
the K̄N subsystem has an invariant mass close to 1428 MeV
with IK̄N = 0 and, at the same time, the KK̄ subsystem
has an invariant mass of around 987 MeV with IKK̄ = 1 is
indicating that the N∗ resonance obtained has an important
KΛ(1405) and a0(980)N components. This result is consis-
tent with what was found in the variational method [18].

We also find that the contribution of the KπΣ and KπΛ
channels to the three-body TR matrix does not alter the peak
position and width found in the case in which only the KK̄N
channel was considered. Therefore, solving the equations
only with the KK̄N channel alone gives the same results as
the ones obtained in the coupled channel approach. The result
that the KπΣ channel does not seem to play an important role
in the dynamical generation of the KK̄N bound state can be
understood by considering the fact that while in the πΣ system
we have the presence of the Λ(1405) resonance, the energy
range relevant for the Kπ and KΣ interactions in the three-
body calculation (solid line in Fig. 2, respectively) is far from
the energy in which the κ(850) and N∗(1535) get dynami-
cally generated, which are the only resonances generated with
the unitary chiral approach in the respective systems [36–38],
and, thus, these interactions are weaker as compared to those
of KK̄ and K̄N in the KK̄N channel. We have also solved
Eq. (3) without the inclusion of the KK̄N channel and we
have found a signal for the N∗(1910) in the KπΣ channel3,
although it is much weaker than the one obtained when the
KK̄N channel was added. Similar situation occurs for the
KπΛ channel. Therefore, the N∗(1910) is made mainly by
KK̄N , where one has the presence of the Λ(1405) in the K̄N
interaction as well as the a0(980) in the KK̄ interaction.

3 The energy position as well as the πΣ invariant mass for which the peak
gets generated is a bit different from the case where the KK̄N channel is
considered:

√
s ∼ 1915 MeV, √sπΣ ∼ 1415 MeV. This fact could be

related to the double pole structure of the Λ(1405).

4

the energy of the three-body system,
√
s, and the invariant

mass of the (23) subsystem projected on isospin I23,
√

sI2323 .
The mass and the width of the state is read off from the peak
position of |TR|2. In general, if resonances are formed due to
the three-body dynamics, they appear in all the coupled chan-
nels. We present here the results involving the TR amplitude
for the particular caseKKK̄ → KKK̄.
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FIG. 2. Contour plots of the three-body squared amplitudes
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for theKKK̄ → KKK̄ transition with

total I = 1/2 as functions of the total three-body energy,
√
s, and the

invariant mass of the KK̄ subsystem with I23 = 0 (upper panel) or
the invariant mass of the other KK̄ subsystem with I23 = 1 (lower
panel).

In Fig. 2, we show the contour plots associated to the modu-
lus squared three-body amplitudes T (1/2,0)

R (upper panel) and
T (1/2,1)
R (lower panel) for the transition KKK̄ → KKK̄
with total isospin I = 1/2. We consider the cases in which
the two-body (23) subsystem is projected on isospin I23 = 0
(upper panel) or I23 = 1 (lower panel) to have the possibil-
ity of generating the f0(980) or a0(980), respectively, in that
subsystem.
First of all, we see in both panels of Fig. 2 a peak structure

at an energy around 3mK ∼ 1488 MeV (with mK = 496
MeV the kaonmass) which appears when the invariant masses
of the respective KK̄ subsystems have a value around 2mK ,
i.e., their threshold values. This peak corresponds then to the
opening of the three-bodyKKK̄ threshold.
Apart from this trivial structure, we find a peak at

√
s ∼

1420 MeV and a width of ∼ 50 MeV when
√

s023 ∼ 983
MeV, as shown in the upper panel of Fig. 2. As it can be seen
in the lower panel of Fig. 2, this resonance state also shows up

for a value of
√

s123 around 950 MeV and
√
s ∼ 1420 MeV.

These two peaks correspond to a single state with a mass ∼
1420 MeV which can be interpreted as a quasibound state of
theKKK̄ system: the resonance gets generated when the in-
variant mass of the KK̄ pair with isospin zero is close to a
value of 983MeV. This means that the f0(980) resonance gets
dynamically generated in the subsystem. On the other hand,
when the KK̄ is projected on I23 = 1, the invariant mass
for the KK̄ pair has a value around 950 MeV, which is close
to the region where the a0(980) gets dynamically generated.
Therefore, for the state found around a total energy of 1420
MeV, both attractions ofKK̄ with isospin 0 and 1 are impor-
tant to form the three-body quasibound state. This is a similar
situation to the three-body resonance stateN∗(1910) found in
theKK̄N system [22, 30], in which the state is generated by
the attraction in K̄N andKK̄.
The state obtained in the KKK̄ system and coupled chan-

nels can probably correspond to the K(1460) listed by the
PDG [33] (which is omitted from the summary table) and
observed in Kππ partial wave analysis, although the width
found in this work is much smaller than the two values listed
by the PDG, around 250 MeV. Note, however, that the width
obtained within this formalism comes only from three-body
channels and, normally, is smaller than the total width observe
for that state to which the two-body decay widths also con-
tribute, even if these two-body channels have a smaller weight
in the resonance wave function, as implicitly assumed in our
study. On the other hand, the poor experimental information
available in this energy region for kaonic states suggest that
the values in Ref. [33] may not be very precise.
To understand further the structure of the resonance found

at 1420 MeV, we have studied the effect of the different three-
body coupled channels calculating the three-body TR ampli-
tude taking into account the KKK̄ channel and excluding
Kππ and Kπη in the three-body space1. In this calcula-
tion, we get again a peak in the KKK̄ amplitude around√
s ∼ 1420 MeV for total isospin I = 1/2 with one of the

KK̄ pairs forming the f0(980) and the other the a0(980) and
with a magnitude in |TR|2 similar to the result obtained with
the full set of coupled channels. If the KKK̄ channel is ex-
cluded and theKππ andKπη channels are considered as cou-
pled channels, a much weaker signal is found around 1450
MeV (a bit higher than the resonance position of the full cal-
culation) for total isospin 1/2. This fact suggests that for the
state found in theKKK̄ system and coupled channels around
1420 MeV the f0(980) resonance plays an important role to
determine the resonance position, since the ππ channel couple
weakly to the f0(980) in the two-body dynamics as compared
to theKK̄ channel and without theKK̄ channel the f0(980)
resonance cannot participate strongly in the three-body dy-
namics. Nevertheless, since there is still some attraction from
the πη channel in the (23) subsystem with I23 = 1 to form
the a0(980) resonance, one can still find a weak signal for the

1 To determine the two-body t matrices of the KK and KK̄ systems we
continue considering all the two-body coupled channels, except for the ηη
channel as done before.

KK̄N KK̄K



Figure 2: (Left) Squared amplitude for the πKK̄ channel for total isospin I = 1 with the KK̄ subsystem
in isospin zero. (Right) Contour plot as a function of the total energy,

√
s, and the invariant mass

√
s23

of the KK̄ subsystem, which is in isospin zero.

experimental upper limit for this state, while the width is close to the lower experimental value,
thus, our findings are compatible with the known data set. Surely, for a better comparison one
needs more experiments which could help in determining the properties of this state with more
precision. The decay modes seen for this resonance are ρπ and π(ππ)Swave. The channel πππ is
a three-body channel which couples to πKK̄ and ππη. However the three pion threshold (around
410 MeV) is far away from the region in which the state is formed, thus, it naturally is not essential
in the generation of the π(1300). However, the inclusion of channels like πππ or ρπ could help in
increasing the width found for the state within our approach, since there is more phase space for
the π(1300) to decay to these channels.

Finally, we would like to mention that apart from the πKK̄, ππη systems, we have also studied
the ηKK̄, ηππ systems in S-wave to search for possible signals of the η states listed in the PDB,
η(1295), η(1405) and η(1475), but we have not found any clear signal which could be related to
any of them.

3.2 Study of the f0(980)ππ and f0(980)KK̄ systems.

The state found at 1400 MeV can be understood as a molecular resonance formed by a pion and
the f0(980), which is dynamically generated in the KK̄ interaction (see Fig. 3). As explained in
Sec. 2.2, we can use the obtained π(KK̄)I=0 → π(KK̄)I=0 three-body T -matrix to determine the
amplitude which describes the interaction between the pion and the f0(980), and use this latter one
to study the f0(980)ππ system. To do this, we first need to relate the amplitude of the π(KK̄)I=0

system with the one of the πf0(980) system. For that, particularizing Eq. (15) for the π-f0(980)
system, we get

8
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We can use now these amplitudes to study systems like
f0(980)⇡⇡, f0(980)KK̄

How to do this?
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Figure 4: (Upper panel) Squared amplitude for the f0(980)ππ channel for total isospin zero, thus, with
the ππ subsystem in isospin zero. (Lower panel) Contour plots as a function of the total energy of the
f0(980)ππ system,

√
s, and the invariant mass of the ππ subsystem,

√
s23 (Left side) and as a function

of the ππ and f0(980)π invariant masses,
√
s23 and

√
s12, respectively (Right side).

negligible and one can solve Eq. (6) considering only the channel f0(980)ππ. For higher values of
the invariant mass of the ππ and KK̄ subsystems, around the region of the f0(980) and a0(980), we
do not find a clear structure which could be associated with higher scalar resonances, like f0(2000)
or f0(2100).
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Decay modes: ⇡⇡,⇡⇡⇡⇡,⇡⇡KK̄

f0(1790) found  by BES Collaboration.6

6 M. Ablikim et al. [BES Collaboration], Phys. Lett. B607, 243-253 (2005). J. Z. Bai, et al. [BES Collaboration], Phys. Lett. B472, 207 
(2000). A. V. Anisovich et al., Phys. Lett. B449 (1999) 154. D. V. Bugg, et al. , Phys. Lett. B353, 378 (1995).



We have solved the Faddeev equations using unitary chiral 
dynamics to determine the input two-body t-matrices.

We have studied several systems made of Kaons, like 

And we have found generation of several states

Conclusions

KK̄N,KKK̄,⇡⇡K̄, f0(980)⇡⇡

N⇤(1910)(1/2+),K(1460),⇡(1300), f0(1790)


