A Search for High Redshift Galaxies behind Gravitationally Lensing Clusters

Ota et al.2011 submitted to Monthly Notices of the Royal Astronomical Society

Kazuaki Ota (Kyoto U)

Johan Richard (Obs.Lyon), Masanori Iye (NAOJ), Takatoshi Shibuya (GUAS), Eiichi Egami (U. Arizona), Nobunari Kashikawa(NAOJ) 2012 Feb. 15 GCOE Symposium

<u>Outline</u>

- 1. Scientific Background
 Why study distant (=high redshift) galaxies?
 2 motivations
 What are gravitationally lensing clusters? Why use them?
- 2. My Study
 - A Search for high redshift galaxies by observing two lensing clusters: A2390, CL0024
 Observations, Data Analysis, Result

3. Summary

1. Scientific Background

- Why study distant (=high redshift) galaxies?
 2 motivations
 - What are gravitationally lensing clusters?
 Why use them?

History of the Universe

- When cosmic reionization started and ended?
- How reionization progressed in time and space?
- What are the primary source of reionization?

1. Studying Galaxy Evolution
- When and how the first galaxies formed?
- How galaxies evolved from the past to present?

Detecting High-z Lyα Emitting Galaxies 8m Telescope

When the 1st galaxies formed?

⇒ Search for the highest redshift galaxies

Galaxy Redshift Records (Spectroscopically confirmed)

<u>Rank</u>	<u>redshift</u>	<u>galaxy name</u>	<u>discoverer</u>	released date
1	7.215	SXDF-NB1006-2	Shibuya+11	2011.12.17
2	7.213	GN-108036	Ono+12	2011.07.15
3	7.109	BDF-3299	Vanzella+11	2011.04.01
4	7.008	BDF-521	Vanzella+11	2011.04.01
5	6.972	G2_1408	Fontana+10	2010.12.20
6	6.964	IOK-1	lye,Ota+06	2006.09.14

Current Redshift Frontier is z~7.2

2. Studying Reionization of the Universe
- When cosmic reionization started and ended?
- How reionization progressed in time and space?
- What are the primary source of reionization?

Lyα emission is sensitive to Cosmic Reionization

Observed number density of Lyα emitting galaxies decreases at z > 6

(due to attenuation of Lyα emission)

1. Scientific Background - Why study distant (=high redshift) galaxies?

- 2 motivations
- What are gravitationally lensing clusters? Why use them?

Graviationally lensing cluster of galaxies

cluster of galaxies

CLUSTER O

Light

bent by

gravity

۰.

GRAVITATIONAL LENSING:

A Distant Source

Light leaves a young, star-forming blue galaxy near the edge of the visible universe.

S

31 UT

gravitational lens created by dark matter and galaxies

Light path ...

distant galaxy. The dark matter's gravity acts like a lens, bending the incoming light.

Line of sight

Light's

3 Focal Point: Earth

DARK MATTER

Most of this light is scattered, but some is focused and directed toward Earth. Observers see multiple, distorted images of the background galaxy. /-- EARTH

MILKY

3

Source: Bell Labs, Lucent Technologies

Tony Tyson, Greg Kochanski and Ian Dell'Antonio Frank O'Connell and Jim McManus/ The New York Times

An example of lensing cluster

Lensed Galaxy

SDSS J1004+4112

Lensed Quasar

Image Credit: NASA, ESA, K. Sharon (Tel Aviv University) and E. Ofek (Caltech)

Abell 1703 z=0.28

image FoV 123"x 136"

expected position of counter Image of 2

expected position of counter Image of 5a/b

z~7 critical curves x100 magnification

-7: z~7 galaxy Why use lensing candidates cluster?

Fluxes of background objects are boosted depending on (X,Y,z)

Advantages: (1) deep imaging with short observing time (2) spectroscopy is easier (3) multiple lensed images

Powerful tool to detect distant faint galaxies

Drawback: Survey area is very small

Bradley et al.(2011)

2. My Study

 A Search for high redshift galaxies by observing two lensing clusters: A2390, CL0024
 Observation, Data Analysis, Result

A Search for z=7.3 Lyα Emitting Galaxies behind Two Lensing Clusters

Hubble Space Telescope Spitzer Space Telescope

Mid-infrared

0.45 Selection Criteria of z=7.3 Ly α galaxies 0.4 1. Detection in NB1006 (>4 σ) **2.** Non-detection in Optical ($< 2\sigma$) 0.35 Hubble 3. z – NB1006 > 2.3 magnitude **Optical Filters** 0.3 0.25 z=7.3 Lyα Filter 0.2 9₄₇₅ r₆₂₅ I₇₇₅ Hubble NB1006 Near-IR Filters 0.15 Z₈₅₀ H₁₆₀ 0.1 Spectrum of 0.05 110 z=7.3 Lyα galaxy 0 0.8 1.6 1.8 0.4 0.6 1.2 1.4

Wavelength (µm)

Transmission

A few objects satisfied selection criteria, but ...

Unfortunately, they were all found to be cosmic ray events hitting the same positions.

20 min. exposures each

stacked

Next Plan: Extending to other lensing clusters

Deep multi-wavelength images are available from archive! Hubble WFPC2, ACS Camera: Optical Images~27-28mag Hubble NICMOS Camera: Near-infrared Images~26-27mag Spitzer IRAC Camera: Mid-infrared Images~24mag

Hubble

Spitzer

Optical to mid-Infrared data

Figure:

Bouwens

Summary **Objectives** (1) To find galaxy at z=7.3 (2) To study cosmic reionization at z>7 **Observation** I searched for z=7.3 Ly α emitting galaxies by imaging two lensing clusters A2390, CL0024 Result I could not detect z=7.3 galaxies Next plan I will extend the study to other lensing clusters