Helical Spin Order in SrFeO₃ and BaFeO₃

Zhi Li

Yukawa Institute for Theoretical Physics (YITP)

Collaborator:

Robert Laskowski (Vienna Univ.) Toshiaki Iitaka (Riken) Takami Tohyama (YITP)

Outline

• 1. Introduction

–Helical spin in $SrFeO_3$ and $BaFeO_3$

- 2. Motivation and Purpose
- 3.Density functional theory (DFT) and model calculation
- 4. Conclusion

Introduction

• For random spin order, the position dependent spin moment can be expressed as :

 $S_i = S(\sin \theta_i \cos \phi_i, \sin \theta_i \sin \phi_i, \cos \theta_i)$

For helical spin order, the constraint is:

$$\theta_i = \vec{q} \cdot \vec{r}_i \quad \phi_i = 0$$

Propagating vector \vec{q} defined in reciprocal space

A-type helical spin $\vec{q} = \phi(1,0,0)$ G-type helical spin $\vec{q} = \phi(1,1,1)$

crystal structure of BaFeO₃

Helical spin order in AFeO₃

• Hallmark of AFeO₃ (A=Ca, Sr, Ba):

Helical spin and the energy of p-orbital of oxygen is lower than the energy of d-orbital of iron

	T _N (K)	q (2π/a)
SrFeO ₃	134	0.112(1,1,1)
BaFeO ₃	110	0.06(1,0,0)

- S. Kawasaki, et.al, J. Phys. Soc. Jpn. 67, 1529 (1998)
- T. Takeda, et.al, **J. Phys. Soc. Jpn. 33**, 967 (1972)
- N. Hayashi, et.al, Angew. Chem. Int. Ed. 50, 12547 (2011)

Conducting band <u></u> Fe 3d⁴ Localized band <u></u>

Introduction-SrFeO₃

- Recent experimental result, SrFeO₃ presents more complicated phase diagram
- 40T magnetic field, ferromagnetism (FM)
- Unknown Phases

 i, ii, iii, iv, v

 They are maybe related to
 the formation of
 domain wall, in which
 helical spin exists

 Ishiwata et al, Phys. Rev. B 84, 054427 (2011)

Introduction-BaFeO₃

- Lattice expansion.
- The size of Ba atom is larger than Sr.
- BaFeO₃ presents FM under 1T magnetic field.

N. Hayashi, et.al, Angew. Chem. Int. Ed. 50, 12547 (2011)

Model calculation

• Double exchange (favor FM) plus superexchange model (favor AFM)

- G-HM will concede to A-HM with decreasing J_{SE}
 - Localized spin: $\mathbf{S}_{j} = S\left(\hat{z}\cos\mathbf{Q}\cdot\mathbf{x}_{j} + \hat{y}\sin\mathbf{Q}\cdot\mathbf{x}_{j}\right)$
- M. Mostovoy, Phys. Rev. Lett. 94, 137205 (2005)

Localized band

Conducting band

Fe 3d⁴

hole

Motivation and purpose

- 1. What is the origin of different stable helical structures in SrFeO₃ and BaFeO₃? The most significant effect may come from lattice parameter. Since ionic radius of Ba²⁺ is larger than Sr²⁺, BaFeO₃ is expanded as compared with SrFeO₃.
- 2. The specialized double exchange model plus superexchange J_{SE} with several empirical parameters can describe SrFeO₃ and BaFeO₃ properly?
- 3. In order to include material information in theory, we need to perform the first principles calculation of magnetic structures in these compounds based on density functional theory (DFT).

Calculation method

- Density functional theory (DFT) calculation.
- For 3*d* electron in transition element, local spin density approximation (LSDA) is insufficient, we need additional on-site Hubbard interaction for correction.

$$E^{\text{LDA}+U}[\rho^{\sigma}(\mathbf{r}), \{n^{\sigma}\}] = E^{\text{LSDA}}[\rho^{\sigma}(\mathbf{r})] + E^{U}[\{n^{\sigma}\}] - E_{\text{dc}}[\{n^{\sigma}\}],$$
$$E_{XC}^{\text{LSDA}}[\rho] = \int dr \rho(r) \varepsilon_{XC}(\rho)$$
$$\Psi_{k}(\mathbf{r}) = \begin{pmatrix} e^{i(k-q/2)\cdot\mathbf{r}} & 0 \\ 0 & e^{i(k+q/2)\cdot\mathbf{r}} \end{pmatrix} \begin{pmatrix} \mu_{k}^{\dagger}(\mathbf{r}) \\ \mu_{k}^{\dagger}(\mathbf{r}) \end{pmatrix}$$

- A. I. Liechtenstein, V. I. Anisimov and J. Zaane, Phys. Rev. B 52, R5467 (1995)
- R. Laskowski, et al, Phys. Rev. B 69, 140408(R) (2004)

DFT calculation-LSDA

- Calculate the propagating vector-dependent total energy per primitive cell
- FM state predicted by LSDA Total energy respect to FM state: $\Delta E(\phi) \equiv E(\phi) - E(\phi = 0)$ $\mathbf{q} = \phi(1, 1, 1) \times 2\pi/a_{\mathrm{S}}$ $\mathbf{q} = \phi(1, 0, 0) \times 2\pi/a_{\mathrm{S}}$

For SrFeO₃: $a_s = 3.85$ Å For BaFeO₃: $a_B = 3.97106$ Å

DFT calculation-LSDA+U

Helical spin order predicted

Density of State

• The density of state (DOS) of FM state in BaFeO₃ is calculate by LSDA+U, U=3.0eV and J=0.6eV

1.The present of O2p just below the Fermi level is an indirect evidence of small or negative charge transfer energy Δ .

2. Both e_g of iron and p orbital of oxygen makes contribution to the metallic conductivity

Model calculation

- Mostovoy's *dp*-model Considering the different lattice parameter in SrFeO₃ and BaFeO₃, the slater-Koster and superexchange parameters is reduced in BaFeO₃ because of large lattice parameter.
- The results of the model calculation are qualitatively consistent with the LSDA+*U*.

Conclusion

- 1. The energy difference between the minimum-energy state and FM state is larger in SrFeO₃ than in BaFeO₃, consistent with experimental observation that SrFeO₃ requires larger magnetic field to achieve saturated FM state.
- 2. The difference of the two compounds is attributed to the difference of lattice constant.
- 3. We have shown clear correspondence between the first principles calculation based on LSAD+U and the double exchange model implemented by superexchange interaction, confirming the importance of the competitions between double exchange and superexchange interactions. The correspondence also implies that the characteristics of negative Δ is included in the first principles calculations.