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There are many entropies:

Clausius, Boltzmann, Gibbs, Shannon,

von Neumann, Rényi,...,

thermodynamic, configurational,
information, corporate,...
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Many entropies:
Claude Shannon recalls...

My greatest concern was what to call it. I thought
of calling it information, but the word was overly
used, so I decided to call it uncertainty. When I
discussed it with John von Neumann, he had a
better idea. Von Neumann told me, You should
call it entropy, for two reasons. In the first place
your uncertainty function has been used in sta-
tistical mechanics under that name, so it already
has a name. In the second place, and more im-
portant,...
nobody knows what entropy really is, so in a
debate you will always have the advantage.
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Clausius thermodynamic entropy:

The fundamental laws of the universe correspond

to two fundamental theorems of the mechanical

theory of heat:

1. The energy of the universe is constant.
2. The entropy of the universe tends
to a maximum.

Rudolf Clausius
The Mechanical Theory of Heat (1867).
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Second law consists of two statements:

2a) Clausius heat theorem: for reversible thermodynamic

transformations

dS =
1

T
δQ

2b) Maximal Carnot efficiency:

dStotal = dS −
1

T
δQ ≥ 0
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There are almost as many formulations of the second law

as there have been discussions of it.

P.W. Bridgman, (1941).

Kelvin statement:

No process is possible in which the sole result is
the absorption of heat from a reservoir and its
complete conversion into work.
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Boltzmann-Planck-Einstein statistical interpretation,

beginning of equilibrium fluctuation theory:

S = kB logW

The impossibility of an uncompensated
decrease of entropy seems to be reduced
to an improbability.
(Gibbs, quoted by Boltzmann)
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H-function: realization of S = kB logW for dilute gases,

Boltzmann’s H-theorem

in the context of the Boltzmann equation for dilute gases

is an extension of the second law:

In one respect we have even generalized the entropy prin-

ciple here, in that we have been able to define the entropy

in a gas that is not in a stationary state

Hence, the long search for some

nonequilibrium entropy...
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As an aside: information paradox

Loss of unitarity/determinism/reversibility
need not be a problem,
e.g. dissipative evolutions are verified for reduced variables

and for typical initial conditions,...
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As an aside (2): horizon problem

Equilibrium need not be a matter of
interactions or causal contact —
equilibrium is typical, based on statisti-
cal/counting considerations,
i.e., maximum entropy for given constraints...
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It does not appear so useful to strictly
try for a nonequilibrium extension of the
entropy concept

- via Clausius heat theorem: entropy related to
heat, possibly via exact differential,...
- via Boltzmann formula: entropy as rate of
fluctuations, large deviations,...
- via H-theorem: entropy as Lyapunov functional,...
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Entropy is born in equilibrium and the
approach to equilibrium

What about NONEQUILIBRIUM?

Beyond close-to-equilibrium, beyond local equilibrium,

beyond linear response, beyond transients,..,

Look at driven systems, open systems connected
with stationary but conflicting reservoirs, causing
steady currents to flow —
energy and particle transport.
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new trends: nonequilibrium material science, bio-calorimetry,
quantum relaxation, nonlinear electrical/optical circuits,
coherent transport, early cosmology, active matter,...
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Thinking beyond entropy then means:

thinking beyond irreversible thermodynamics,
beyond local equilibrium,
beyond linear regime around equilibrium,
and stopping the obsession with entropy...

leaving space for some totally new concepts, in
particular related to nonequilibrium kinetics and
time-symmetric fluctuation sector.
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We meet time-symmetric fluctuation
sector in the concept of FRENESY

3. in nonequilibrium heat capacities;
2. in dynamical fluctuation and response theory;
1. in stability analysis, as Lyapunov functional,...
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FRENESY

3. via nonequilibrium heat capacity,...
2. via nonequilibrium response theory, related to
fluctuations, large deviations,...
1. via H-theorem: dynamical activity and escape
rate formalism
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Origin of words: entropy comes from the Greek for change,

turning around,

I propose to name the quantity S the entropy
of the system, after the Greek word [trope], the
transformation. I have deliberately chosen the
word entropy to be as similar as possible to the
word energy: the two quantities to be named by
these words are so closely related in physical sig-
nificance that a certain similarity in their names
appears to be appropriate.(Clausius. 1865)
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Origin of words: frenesy comes from the Greek for

inflammation of the brain,

I propose to call frenetic those contributions that
are related to time-symmetric kinetics. Frenesy
(or dynamical activity, time-symmetric traffic) then
expresses a complement to entropy, especially
needed well away from thermodynamic equilib-
rium, as was first summarized by Landauer (1975)
in his Blowtorch Theorem.
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1. Excess in dynamical activity as new
Lyapunov functional.

cf.

C. Maes, K. Netocny and B.Wynants: Mono-
tone return to steady nonequilibrium, Phys. Rev.
Lett. 107, 010601 (2011).
C. Maes, K. Netocny and B.Wynants: Mono-
tonicity of the dynamical activity, arXiv:1102.2690v2
[math-ph].
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Physics riddle:

It increases — what could it be?

typical answer: something entropic....

cf. H-theorems and the role of ther-
modynamic potentials as Lyapunov func-
tions in irreversible macroscopic equations.
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Examples of Lyapunov functions:

Cahn-Hilliard equation:

F [c] ≡ ∫
dx{(1− c2)2 + γ

2|∇c|
2}

Boltzmann equation:
H[f ] ≡ − ∫

dqdp f(q, p) log f(q, p)
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Zooming in on Master equation

(linear Boltzmann equation - Markov processes):

d

dt
µt(x) =

∑
y
{k(y, x)µt(y)− k(x, y)µt(x)}

say irreducible, with finite number of states x and unique

stationary distribution ρ: well-known mathematical fact,

s(µt|ρ) =
∑
x
µt(x) log

µt(x)

ρ(x)
↓0
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What is the meaning of and how useful is this

monotonicity of the relative entropy?

Mostly limited to processes satisfying detailed

balance, in their approach to stationary equilib-

rium... because then

s(µ|ρ) = F [µ]− F [ρ]

F [ρ] = −β logZ, ρ(x) =
1

Z
e−βU(x)
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and so, under detailed balance with potential

function U(x), we are really speaking about the

monotonicity of the free energy functional

F [µ] =
∑
x
µ(x)U(x) +

∑
x
µ(x) logµ(x)

F [µt] ↓ − β logZ

for µt solving the Master equation.
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NEW IDEA

NONEQUILIBRIUM system as

caged system, kinematically constrained,
much more dominated by noise and time-
symmetric fluctuations.
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HEURISTICS

ENTROPY: volume of phase space
region for values of reduced variables

FRENESY: surface
(exit+entrance) of phase space
region
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.
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FRENESY measures the escape rate from

a certain state.

How many transitions per unit time —
a measure of time-symmetric currents.
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Given reduced (mesoscopic) states x, y, . . . distributed with

probability law µ.

The FRENESY in µ

depends on nonequilibrium driving,

and can change under opening additional
dissipation channels.
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New result: Under normal linear response,

excess in frenesy goes to zero,

monotone decay to zero, for large
times t.
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2. Frenetic contribution as correction
to fluctuation-dissipation theorem and as
large deviation functional.

cf.

C. Maes, Fluctuations and response out-of-equilibrium.
Progress of Theoretical Physics Supplement 184,
318–328 (2010).
C. Maes, K. Netocny and B. Wynants, On and
beyond entropy production; the case of Markov
jump processes. Markov Processes and Related
Fields 14, 445–464 (2008).
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Remember Kubo-theory: the linear response to a

perturbation at equilibrium is directly related to

the energy dissipation in the return to equilib-

rium.

〈Q(t)〉h − 〈Q(t)〉 = 〈ENT[0,t](ω)Q(xt)〉

where

ENT[0,t](ω) is the entropy flux due to the decay

of the perturbation over time-interval [0, t].
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Fluctuation-dissipation theorem

Suppose at t = 0 equilibrium system at β−1. Add pertur-

bation −ht V, t > 0 to potential. Look at linear response:

〈Q(t)〉h = 〈Q(t)〉+
∫ t
0

ds hsRQV (t, s) + o(h)

In equilibrium:

RQV (t, s) = β
d

ds
〈V (s)Q(t)〉
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Major motivation and subject:

To know a system is to know its response
to external stimuli.
If that response is related to the struc-
ture of (internal) fluctuations — that is
even better.

35



.

36



NEW

The nonequilibrium formula takes the form

〈Q(t)〉h − 〈Q(t)〉 =
1

2
〈ENT[0,t]Q(t)〉+

1

2
〈ESC[0,t]Q(t)〉

where

ESC[0,t] is the excess in dynamical activity due to

the decay of the perturbation over time-interval

[0, t].
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Example: boundary driven lattice gas in nonequi-
librium steady state.
E.g. ions hopping through cell pore / ion channel

What happens to the density if you in-
crease the chemical potentials inside and
outside the cell?

Think of boundary driven Kawasaki dynamics in linear chain

or of boundary driven Lorentz gas.
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Entropic contribution makes

β
d

ds
〈N (s)N (t)〉

which amounts to local density fluctuations (as
for response formulae in equilibrium)
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Frenetic contribution makes

β 〈J (s)N (t)〉

for the instantaneous particle current J,
the rate at which the total number of particles
changes at each time.
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Independent of all dynamical details, in
the driven steady regime:

RNN(t, s)− β
d

ds
〈N (Xs)N (Xt)〉 =

β

2
〈N (Xs)J (Xt)〉 −

β

2
〈J (Xs)N (Xt)〉
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For example: boundary driven Lorentz gas
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Example from work by Takahiro Nemoto and

Shin-ichi Sasa:

Thermodynamic formula for the cumulant generating func-

tion of time-averaged current, Phys. Rev. E 84 (2011).

cumulant generating function

log〈 exp {λ · time-integrated current} 〉

can be written (variationally) as a difference in dynamical
activities.
All that is related to dynamical large deviation theory of
Donsker-Varadhan (1975), where
large deviation rate function for stationary occupation times
involves differences in dynamical activities.
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3. Time-symmetric sector in
nonequilibrium heat capacities.

cf.

Eliran Boksenbojm, Christian Maes, Karel
Netocny and Jirka Pesek:
Heat capacity in nonequilibrium steady states,
Europhysics Letters 96, 40001 (2011).
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MAIN QUESTION:

how to make physical sense of

heat capacities

for steady nonequilibrium systems.

The main idea is to consider the
excess heat when the environment
temperature is changed.
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The main idea is to consider the

excess heat when the environment temperature is changed.

cf. previous theoretical work where the notion
of excess heat was introduced in contrast with
house-keeping heat:
papers by Oono-Paniconi (1998), Hatano-Sasa
(2001), Ruelle (2003),
Komatsu-Nakagawa-Sasa-Tasaki (2008),...
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START at time zero from steady regime at temperature

T , and suddenly CHANGE THE TEMPERATURE to T ′ =
T + dT .

WAIT a time τ > τr (relaxation time) and LOOK AT THE

HEAT Q := Q[0,τ ] over times t ∈ [0, τ ]:

Q = E(xτ)− E(x0)−
∫ τ

0
F (xt) ẋt dt

for energy E and force F that acts on the system.

Denote 〈Q〉 the heat average over all trajectories in [0, τ ],

and 〈Q〉T ′ is the steady heat at temperature T ′.
Then, heat capacity C(T ) is defined as

〈Q〉 − 〈Q〉T ′ = C(T ) dT
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Example

a Brownian particle driven through a toroidal trap,

see e.g. the experimental realization and nonequilibrium

response in the paper

Juan Ruben Gomez-Solano et al: Fluctuations and re-

sponse in a non-equilibrium micron-sized system, Journal

of Statistical Mechanics, P01008 (2011).
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Interesting behavior at low temperatures
and critical at F = A:

For F < A: localized regime, similar to equilibrium;
For F > A: conducting regime, energy-temperature
response gets weaker.

ẋt = A sin 2πxt + F +
√

2T ξt

U(x) =
A

2π
cos 2πx, ξt = standard white noise
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For very slowly varying temperature Tt,

ẋt = A sin 2πxt + F +
√

2Tt ξt

and we ask for the nonequilibrium
specific heat and
(1) how it relates to the temperature de-
pendence of the dissipated power, and
(2) how it can be expressed as heat/activity
fluctuations.
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1.Relation with T -dependence of heat current:

Suppose Ts− T = ε sin(ωs) with some small unit ε of tem-

perature change.

Then, the low-frequency asymptotics of the heat current

response is

J
Q
t = J

Q
0 + ε [σ sin(ωt)− C(T )ω cos(ωt) +O(ω2)]

and the (quasistatic) steady heat capacity provides the

leading low-frequency (out-phase) correction to the steady

(in-phase) linear temperature-heat relation. This also in-

dicates how the steady heat capacity can possibly be de-

tected and measured from the response to slow periodic

temperature variations.
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2. Relation with fluctuation theory:

In equilibrium: heat capacity in the canonical ensemble

(fixed volume and particle number) ∝ energy variance;

In nonequilibrium: heat/activity fluctuations:

C(T ) =
1

2kBT2
〈{Q− −Q+} {

∫ ∞
0

dsA(xs) + Q(ω)}〉

where Q is heat and A is a state function, expressing
nonequilibrium kinetics, which originates
from the time-symmetric sector.
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One consequence: heat capacity can become negative.

Example: overdamped motion of star in dense

cluster with differential rotation,

ẋt = F −∇U +
√

2T ξt

U(r, θ) =
λ

2
r2, F (r, θ) = κ rα~eθ, α > −1

quadratic central potential U and angular driving F .
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The heat capacity as defined via the quasi-static excess

heat is given by

CF =
∂〈U〉
∂T

+ ∆CF ,

with “correction”

∆CF =
αṠ

2λ
∝ Tα−1

linear in steady entropy production rate Ṡ.

The heat capacity CF becomes negative whenever α < 0

and driving large enough or T small enough.
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To first order

in the nonequilibrium driving,

C =
d

dT
〈E〉 −

1

T

(
〈E〉 − 〈E〉eq

)

which adds two responses.
Right-hand side is purely steady state property
— no process property.
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Experimental explorations on steady

nonequilibrium heat capacities:

papers by Sevilla group such as by
del Cerro-Ramos (1993),
Del Cerro-Martin-Ramos (1996).

62



Conclusions:
There is a world and even life beyond en-
tropy...

We see it in

- new H-theorems — Lyapunov function;
- new fluctuation-dissipation-activity theorem;
- new effects in nonequilibirum heat capacity.
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Moreover:

Entropy defocuses in nonequilibrium physics as
- dynamical fluctuations not expressed in terms
of heat dissipation;
- entropy gets curvature — non-scalar thermo-
dynamic potentials.

see also many other similar observations, such as in

“Geometrical Clausius Equality for Steady State Thermo-

dynamics” by Takahiro Sagawa, Hisao Hayakawa.
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paper download from

http://itf.fys.kuleuven.be/~christ/

Christian Maes
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