Exotic Superconductivity A matter of Symmetry and Topology

Hunting the Higgs - finally a happy end

P. Higgs

P.W. Anderson

Hunting the Higgs - finally a happy end

Phenomenon "Superconductivity"

Phenomenon "Superconductivity"

Phenomenon "Superconductivity"

Bardeen-Cooper-Schrieffer

superconductivity as a Fermi surface instability electrons of opposite momenta correlate to form a coherent state of Cooper pairs

$$(-\vec{k},s')$$
 (\vec{k},s) (\vec{k},s) (\vec{k},s) (\vec{k},s)

$$|\Phi_{BCS}\rangle = \bigotimes_{\vec{k}\,,s,s'} \left\{ u_{\,\vec{k}\,,ss'} + v_{\,\vec{k}\,,ss'} |\,\vec{k}\,,s;-\vec{k}\,,s'\rangle \right\}$$

Bardeen-Cooper-Schrieffer

Bardeen-Cooper-Schrieffer

superconductivity as a Fermi surface instability

$$(\vec{k},s;-\vec{k},s')$$
 (\vec{k},s)
 $(-\vec{k},s')$ Cooper pair

electrons of opposite momenta correlate to form a coherent state of Cooper pairs

$$|\Phi_{BCS}\rangle = \bigotimes_{\vec{k}\,,s,s'} \left\{ u_{\,\vec{k}\,,ss'} + v_{\,\vec{k}\,,ss'} |\,\vec{k}\,,s; -\vec{k}\,,s'\rangle \right\}$$

n

$$\begin{split} \psi_{\vec{k},ss'} &= \langle \Phi_{BCS} | c_{-\vec{k}\,s'} c_{\vec{k}\,s} | \Phi_{BCS} \rangle \\ &= u^*_{\vec{k},ss'} v_{\vec{k},ss'} \end{split}$$

Bardeen-Cooper-Schrieffer

Bardeen-Cooper-Schrieffer

superconductivity as a Fermi surface instability

$$(-\vec{k},s')$$
 (\vec{k},s) (\vec{k},s)

electrons of opposite momenta correlate to form a coherent state of Cooper pairs

$$\left \langle \Phi_{BCS}
ight
angle = igodot_{ec{k}\,,ss'} \left \{ u_{\,ec{k}\,,ss'} + v_{\,ec{k}\,,ss'} |\,ec{k}\,,s; -ec{k}\,,s'
ight
angle
ight \}$$

pair wave function $\psi_{\vec{k},ss'} = \langle \Phi_{BCS} | c_{-\vec{k}s'} c_{\vec{k}s} | \Phi_{BCS} \rangle$ $= u^*_{\vec{k},ss'} v_{\vec{k},ss'}$ orbital & spin symmetry

orbital	spin
angular momentum	$ 1/2 angle\otimes 1/2 angle$
ℓ parity (−1) ^ℓ	spin singlet spin triplet

Bardeen-Cooper-Schrieffer

superconductivity as a Fermi surface instability

 (\vec{k},s) (\vec{k},s) (\vec{k},s) (\vec{k},s)

electrons of opposite momenta correlate to form a coherent state of Cooper pairs

$$\Phi_{BCS}
angle = \bigotimes_{ec{k}\,,s,s'} \left\{ u_{ec{k}\,,ss'} + v_{ec{k}\,,ss'} | \,ec{k}\,,s; -ec{k}\,,s'
angle
ight\}$$

Bardeen-Cooper-Schrieffer

superconductivity as a Fermi surface instability

 $(\vec{k}, s; -\vec{k}, s')$ (\vec{k}, s) $(-\vec{k}, s')$

$$\ket{\Phi_{BCS}} = igodot_{ec{k}\,,s,s'} \left\{ u_{\,ec{k}\,,ss'} + v_{\,ec{k}\,,ss'} \,|\,ec{k}\,,s; - ec{k}\,,s'
ight
angle
ight\}$$

 \boldsymbol{S} :

$$\ell = 0$$
 most symmetric
 $S = 0$ "conventional"
 $\ell \neq 0$ lower symmetry

$$= 0,1$$
 "unconventional"

superfluid A- and B- phase

chiral p-wave superconductor

 $T_c\approx 1.5K$

Maeno et al 1994

$$\hat{\Psi}_{ec{k}} = \left(egin{array}{cc} 0 & k_x \pm i k_y \ k_x \pm i k_y & 0 \end{array}
ight)$$

$$k_x + ik_y \xleftarrow{K} k_x - ik_y$$

broken time reversal symmetry ${\cal K}$

$$D_{4h} \times SU(2) \times \mathcal{K} \times U(1)_{\phi}$$

analog to ³He A-phase

$$U(1)_{S_z} \times U(1)_{L_z+\phi}$$

Deguchi & Maeno

$$T_c \approx 1.5K$$

Maeno et al 1994

$$\hat{\Psi}_{ec{k}} = \left(egin{array}{cc} 0 & k_x \pm i k_y \ k_x \pm i k_y & 0 \end{array}
ight)$$

$$k_x + ik_y \stackrel{\hat{K}}{\longleftrightarrow} k_x - ik_y$$

broken time reversal symmetry ${\cal K}$

 $T_c \approx 1.5 K$

Maeno et al 1994

$$\hat{\Psi}_{ec{k}} = \left(egin{array}{cc} 0 & k_x \pm i k_y \ k_x \pm i k_y & 0 \end{array}
ight)$$

$$e^{+i heta_{ec k}} \stackrel{\hat K}{\longleftrightarrow} e^{-i heta_{ec k}}$$

broken time reversal symmetry ${\cal K}$

$$D_{4h} \times SU(2) \times \mathcal{K} \times U(1)_{\phi}$$

$$\bigcup_{U(1)_{S_z}} U(1)_{L_z + \phi}$$

Cooper pair

magnetic moment for charge particles

-*M*

$$\hat{\Psi}_{ec{k}} = \left(egin{array}{cc} 0 & k_x \pm i k_y \ k_x \pm i k_y & 0 \end{array}
ight)$$

anomalous electromagnetism

SC

$$ho = rac{e^2}{hc} \hat{z} \cdot ec{B}$$
 $ec{j} = rac{e^2}{h} ec{E} imes \hat{z}$

charge fluctuation generate magnetic flux

U

currents generate transverse electric field

$$(1)_{S_z} imes U(1)_{L_z+\phi}$$

 $R_{\phi}U_{-\phi} = 1$
 $\hat{L}_z - \hat{N} \begin{array}{c} ext{conserved} \ ext{"charge"} \ ext{Volovik} \end{array}$

Sr_2RuO_4 - chiral p-wave superconductor

magnetic moment $\hat{\Psi}_{ec{k}} = egin{pmatrix} 0 & k_x \pm i k_y \ k_x \pm i k_y & 0 \end{pmatrix}$ for charge particles Cooper pair -*M* SC analogy to the integer quantum Hall state $\nu = 1$ 2-dim. anomalous Bo electron gas electromagnetism $ho = rac{e^2}{hc} \hat{z} \cdot ec{B}$ $\rho_{xx}^{c}(k\Omega)$ $R_{H}(h/e^{2})$ $\vec{j} = rac{e^2}{h} \vec{E} imes \hat{z}$ cyclotron orbits 1/31/4 1/6 **م**لـ 15 10

5

B(T)

edge states

Quantum Hall state

chiral p-wave SC

Andreev bound states

"bouncing cyclotron orbits"

edge states

edge states

Quantum Hall state

"bouncing cyclotron orbits"

chiral p-wave SC

Andreev bound states

electron-hole hybridized Bohr-Sommerfeld-orbits

edge states

intrinsic magnetism ?

random local magnetism

"edge currents" around inhomogeneities & defects

edge state currents

edge states ?

edge states ?

edge states ?

Kashiwaya et al.

chirality ?

polar Kerr effect

polarization axis of reflected light is rotated

chirality ?

polar Kerr effect

polarization axis of reflected light is rotated

mSR:random intrinsic magnetismpositivescanning probes:chiral surface currentsnegativepolar Kerr effect:optical property - chiralitycompatibleJosephson interference effect:chiral domains

Anomalous Josephson effect

Josephson coupling via Ru-inclusions

Maeno et al (1997)

onset of inhomogeneous superconductivity at $T^*pprox 3K$

"3-Kelvin phase"

time reversal & inversion symmetry

electrons which can be paired

$$|\Phi_{BCS}\rangle = \bigotimes_{\vec{k}\,,s,s'} \left\{ u_{\,\vec{k}\,,ss'} + v_{\,\vec{k}\,,ss'} |\,\vec{k}\,,s; -\vec{k}\,,s'\rangle \right\}$$

time reversal & inversion symmetry

ensure presence of degenerate pairing partners

$$|\vec{k},s
angle ~~ |-\vec{k},s'
angle$$

time reversal & inversion symmetry

electrons which can be paired

$$|\Phi_{BCS}
angle = \bigotimes_{ec{k}\,,s,s'} \left\{ u_{ec{k}\,,ss'} + v_{ec{k}\,,ss'} |\,ec{k}\,,s;-ec{k}\,,s'
angle
ight\}$$

time reversal & inversion symmetry

ensure presence of degenerate pairing partners

$$|\vec{k},s
angle ~~ |-\vec{k},s'
angle$$

lack of time reversal or inversion symmetry

Cooper pairs with mixed parity / spin

Ce-based heavy Fermion superconductor

Bauer et al (2004)

Ce-based heavy Fermion superconductor

Ce-based heavy Fermion superconductor

$$\mathcal{H}_{so} = lpha \; \sum_{ec{k}\,,s,s'} (\hat{z} imes ec{k}\,) \cdot ec{\sigma}_{\,ss'} |\,ec{k}\,,s
angle \langle ec{k}\,,s'|$$

electronic spin structure *determines* Cooper pairing symmetry

$$\mathcal{H}_{so} = lpha \; \sum_{ec{k}\,,s,s'} (\hat{z} imes \;ec{k}\,) \cdot \:ec{\sigma}_{\,ss'} |\,ec{k}\,,s
angle \langle \,ec{k}\,,s'|$$

electronic spin structure *determines* Cooper pairing symmetry

"conventional" parity-mixed pairing state

analog to ³He *B*-phase $SO(3)_{L+S} \times \mathcal{K}$ $U(1)_{L_z+S_z} \times \mathcal{K}$

$$\mathcal{H}_{so} = lpha \; \sum_{ec{k}\,,s,s'} (\hat{z} imes ec{k}\,) \cdot ec{\sigma}_{\,ss'} |\,ec{k}\,,s
angle \langle ec{k}\,,s'|$$

electronic spin structure *determines* Cooper pairing symmetry

"conventional" parity-mixed pairing state

$$\mathcal{H}_{so} = lpha \; \sum_{ec{k}\,,s,s'} (\hat{z} imes ec{k}\,) \cdot ec{\sigma}_{\,ss'} |\,ec{k}\,,s
angle \langle ec{k}\,,s'|$$

electronic spin structure *determines* Cooper pairing symmetry

"conventional" parity-mixed pairing state

Helical edge states - Andreev bound states

Helical edge states - Andreev bound states

Helical edge states - Andreev bound states

$$\hat{\Psi}_{\vec{k}} = \left(egin{array}{cc} i\psi_o(k_x-ik_y) & \psi_e \ & \ -\psi_e & i\psi_o(k_x+ik_y) \end{array}
ight)$$

$$|\psi_e| < |\psi_o|$$

dominant odd parity topologically non-trivial

quasiparticle spectra - tunneling

tunnel-contact

 $|\psi_e| > |\psi_o|$

dominant even parity

topologically trivial

 $\begin{array}{c} \mathsf{CePt}_3\mathsf{Si}\\ \text{good candidate for}\\ |\psi_e| < |\psi_o|\\ \text{but no experiments so far} \end{array}$

Helical phase

magneto-electric effects

Magneto-electric effects - helical phase

shift of Fermi surface centers

Cooper pairing with finite momentum

helical phase:
$$\Psi(\vec{r}) = \Psi_0(\vec{r}) e^{i\vec{q}\cdot\vec{r}}$$
 with $\vec{q} = K(\hat{z}\times\vec{H})$

analog to Fulde-Ferrel phase (different mechanism)

Kaur et al, Dimitrova et al

Magneto-electric effects - helical phase

shift of Fermi surface centers

Cooper pairing with finite momentum

helical phase:
$$\Psi(\vec{r}) = \Psi_0(\vec{r}) e^{i\vec{q}\cdot\vec{r}}$$
 with $\vec{q} = K(\hat{z} \times \vec{H})$

analog to Fulde-Ferrel phase (different mechanism)

Kaur et al, Dimitrova et al

Magneto-electric effects - helical phase

Kaur et al, Dimitrova et al

Crystal twin domains

non-centrosymmetric crystals can be twinned

Crystal twin domains

non-centrosymmetric crystals can be twinned

Crystal twin domains

non-centrosymmetric crystals can be twinned

$$\Psi(\vec{r}) = \Psi_0(\vec{r}) e^{i\vec{q}_+\cdot\vec{r}}$$

 $\Psi(ec{r})=\Psi_0(ec{r})e^{iec{q}_-\cdotec{r}}$

matching at twin boundary

$$ec{q}_{\pm} = \pm K(\hat{z} imes ec{H}) - rac{2e}{\hbar c}ec{A}_{\pm}$$

small fields

→ "wave function machting"

$$q_{y+} = q_{y-}$$

first-order transition in a magnetic field

first-order transition in a magnetic field

Conclusion

symmetry and topology classification of superconductors

class	SU(2)	TRS
D	no	no
DIII	no	yes
А	restricted	no
AIII	restricted	yes
С	yes	no
CI	yes	yes

Schnyder, Ryu, Furusaki & Ludwig (2008)

Conclusion

symmetry and topology classification of superconductors

Schnyder, Ryu, Furusaki & Ludwig (2008)

Conclusion

symmetry and topology classification of superconductors

Collaborators & Acknowledgement

Theory:

D. Agterberg, K. Aoyama, S. Etter, P. Frigeri, S. Fujimoto,
A. Furusaki, J. Goryo, B. Gut, N. Hayashi, Y. Imai, C. Iniotakis,
H. Kaneyasu, R. Kaur, A. Koga, F. Loder, M. Matsumoto,
D. Perez, T.M. Rice, L. Savary, Y. Tanaka, K. Wakabayashi,
Y. Yokoyama, Y. Yanase

Experimental groups:

Y. Maeno, E. Bauer, A. Mackenzie, J. Kirtley, K. Moler, Q. Mao, Y. Liu, H. Yaguchi, T. Nakamura, Y. Onuki, R. Settai, N. Kimura, I. Bonalde, A. Kapitulnik, ...

Unconventional Superconductors

strongly correlated electron systems

heavy Fermion compounds

Unconventional Superconductors

strongly correlated electron systems

Unconventional Superconductors

strongly correlated electron systems

pnictide superconductors

"essential !?"

superconductivity connected with magnetism

Competion Cooperation Coexistence