GCOE Symposium Development of emergent new fields

February 14 2013

Ultracold atoms in an optical lattice -an ideal simulator of strongly-correlated quantum many-body system-

Y. Takahashi

Research Objectives of Our Group in GCOE program

Application of atoms to investigating 1) quantum information (science) and

2) (aspects of) fundamental physics (integrating optical and atomic experiments with elementary particle theories) We have initiated a new research project : **"Test of Gravity at Nano-meter Scale by using Bose-Einstein Condensate"** from the discussion with prof. Ando (special AP of GCOE)

"Revealed Insufficiency of simple mass-independent Potential"

-1

-0.5

kHz

Current status:

 $\sim 1 \text{kHz}$

9000

8000

7000

6000

5000

4000

3000

2000

-2

-1.5

Research Objectives of Our Group in GCOE program

Application of atoms to investigating 1) quantum information (science) and 2) (aspects of) fundamental physics

(integrating optical and atomic experiments with elementary particle theories)

Quantum Simulation of Hubbard Model

Outline

Quantum Simulation of Strongly-Correlated System

dual Mott insulator of Boson and Fermion SU(6) Mott insulator high-resolution spectroscopy of SF-Mott insulator transition

Resonant Control of Interaction:

anisotropy-induced Feshbach resonance between ${}^{1}S_{0}$ and ${}^{3}P_{2}$ states

Prospects:

Lieb lattice Quantum Gas Microscope YbLi Spin-Orbit Interaction

Outline

Quantum Simulation of Strongly-Correlated System

dual Mott insulator of Boson and Fermion SU(6) Mott insulator high-resolution spectroscopy of SF-Mott insulator transition

Resonant Control of Interaction: anisotropy-induced Feshbach resonance between ${}^{1}S_{0}$ and ${}^{3}P_{2}$ states

Prospects:

Lieb lattice

Quantum Gas Microscope

YbLi

Spin-Orbit Interaction

Magnetism, Superconductivity

Quantum Simulation Using ultracold atoms in an Optical Lattice

$$H = -J \sum_{\langle i,j \rangle} a_i^+ a_j + \frac{U}{2} \sum_i n_i (n_i - 1) + \sum_i \mathcal{E}_i n_i$$

→ clean system, high controllability, various geometry, etc

"Optical lattice" = periodic potential for atoms generated by standing wave of laser light

In fact, there are many QS experiments using Alkali-atoms

Quantum Simulation Using Ytterbium atoms in an Optical Lattice

$$H = -J \sum_{\langle i,j \rangle} a_{i}^{+} a_{j} + \frac{U}{2} \sum_{i} n_{i} (n_{i} - 1) + \sum_{i} \mathcal{E}_{i} n_{i}$$

Unique Features of Ytterbium Atoms

Rich Variety of Isotopes

¹⁶⁸ Yb	¹⁷⁰ Yb	¹⁷¹ Yb	¹⁷² Yb	¹⁷³ Yb	174 Yb	¹⁷⁶ Yb	
(0.13%)	(3.05%)	(14.3%)	(21.9%)	(16.2%)	(31.8%)	(12.7%)	
Boson	Boson	Fermion	Boson	Fermion	Boson	Boson	
	• Attrac $a_{BF} =$	tive Intera - 4.3 nm	Repulsive Interaction: $a_{BF} = +7.3 \text{ nm}$				
	$a_{BB} = -$ $a_{FF} = -$	+3.4 nm +10.6 nm		$a_{BB} = +5.6 \text{ nm}$ $a_{FF} = +10.6 \text{ nm}$			

By loading the BF mixtures into 3D optical lattice, we successfully create

"Strongly Interacting Dual Mott Insulators"

[S. Sugawa, K. Inaba, et al., Nature Physics. 7, 642–648 (2011)]

- arXiv:1205.4026v1 Ehud Altman, Eugene Demler, Achim Rosch "Mott criticality and pseudogap in Bose-Fermi mixtures"
- arXiv:1204.3988 Ippei Danshita and L. Mathey "Counterflow superfluid of polaron pairs in Bose-Fermi mixtures in optical lattices"

Unique Features of Ytterbium Atoms

Rich Variety of Isotopes

¹⁶⁸ Yb	¹⁷⁰ Yb	¹⁷¹ Yb	¹⁷² Yb	¹⁷³ Yb	¹⁷⁴ Yb	¹⁷⁶ Yb
(0.13%)	(3.05%)	(14.3%)	(21.9%)	(16.2%)	(31.8%)	(12.7%)
Boson	Boson	Fermion	Boson	Fermion	Boson	Boson

¹⁷³Yb (I=5/2)
$$+5/2$$
 $+3/2$ $+1/2$ $-1/2$ $-3/2$ $-5/2$
"origin of spin degrees of freedom is "nuclear spin"

$$H_{\text{int}} = \frac{4\pi\hbar^2 a_s}{M} \,\delta(\vec{r}_1 - \vec{r}_2) \,\text{SU(6) system}$$

"Experimental realization is very difficult in solid state system"

SU(6) Fermion

Lattice Modulation Technique

N=1.9× 104, 11E_R, 18% pp mod. U/t=62.4

We could successfully create SU(6) Mott Insulator

Unique Features of Ytterbium Atoms

Spectroscopy of Atoms in a Mott Insulating State

Frequency detuning (kHz)

Spectroscopy of Superfluid-Mott Insulator Transition Theory (NTT) and Experiment (Kyoto) $\hbar^2 k_L^2$ Intermediate Superfluid Non-Hubbard 2mMott insulator 1.2F (a) (m) (e) (1)15 Er 11 Er 7 Er 3 Er 0.8 0.4

High-resolution laser spectroscopy is a powerful tool for the study of SF-Mott insulator transition

Frequency detuning (kHz)

Outline

Quantum Simulation of Strongly-Correlated System dual Mott insulator of Boson and Fermion SU(6) Mott insulator

high-resolution spectroscopy of SF-Mott insulator transition

Resonant Control of Interaction:

anisotropy-induced Feshbach resonance between ${}^{1}S_{0}$ and ${}^{3}P_{2}$ states

Prospects: Lieb lattice Quantum Gas Microscope YbLi Spin-Orbit Interaction

Quantum Simulation Using Ytterbium atoms in an Optical Lattice

How to Control *U* for alkali-atoms <u>Magnetic Feshbach Resonance</u> $({}^{2}S_{1/2} + {}^{2}S_{1/2})$

Coupling between "Open Channel" and "Closed Channel" results in

Resonant Control of Interaction(a_s)

How to Control U for Yb atoms Optical Feshbach Resonance for Yb atoms $({}^{1}S_{0} + {}^{1}S_{0})$

"Optical Feshbach Resonance Using the Intercombination Transition"

K. Enomoto, et al., PRL,101, 203201(2008),

"Submicron Spatial Modulation of an Interatomic Interaction in a BEC"
R. Yamazaki, *et al.*, PRL,105, 050405(2010)

"Manipulating Higher Partial-Wave Interatomic Interaction with an Optical Feshbach Resonance"

R. Yamazaki et al., arXiv:1210.2567

There is a significant loss due to Photoassociation

Unique Features of Ytterbium Atoms

Long-lived metastable state

Magnetic Feshbach Resonance between ¹S₀ and ³P₂

We can study various interesting physics with resonant interaction

Outline

Quantum Simulation of Strongly-Correlated System

dual Mott insulator of Boson and Fermion SU(6) Mott insulator high-resolution spectroscopy of SF-Mott insulator transition

Resonant Control of Interaction: anisotropy-induced Feshbach resonance between ${}^{1}S_{0}$ and ${}^{3}P_{2}$ states

Prospects:

Lieb lattice Quantum Gas Microscope YbLi Spin-Orbit Interaction

"Non-Standard Lattice-Lieb Lattice-" E. H. Lieb, PRL 62, 1201 (1989)

$$E_{\pm} = \pm \sqrt{\Delta^2 + 4t^2} \{\cos^2(k_x a/2) + \cos^2(k_y a/2)\}$$

TOF:14ms

"proposal for optical lattice implementation" R. Shen et al., PRB**81**, 041410R,2010

 $\lambda_1 = 532 \text{ nm}$ $\lambda_2 = 1064 \text{ nm}$

Developing Yb Quantum Gas Microscope

Boson, Fermion, Bose-Fermi Mixture

<u>Anderson Hubbard Model</u>

$$H = -J \sum_{\langle i,j \rangle,m=\uparrow,\downarrow} C^+_{i,m} C_{j,m} + U \sum_i n_{i,\uparrow} n_{i,\downarrow} + \sum_i W_i n_i \qquad W_i = \begin{cases} W \text{ (with Yb)} \\ 0 \text{ (without Yb)} \end{cases}$$

<u>High-resolution Spectroscopy:</u> <u>Anderson Othogonality Catastorophe</u>

Anderson Hubbard Model

 $H = -J \sum_{\langle i,j \rangle, m=\uparrow,\downarrow} C_{i,m}^{+} C_{j,m} + U \sum_{i} n_{i,\uparrow} n_{i,\downarrow} + \sum_{i} W_{i} n_{i} \qquad W_{i} = \begin{cases} W \text{ (with Yb)} \\ 0 \text{ (without Yb)} \end{cases}$

"Superfluid-Mott insulator Transition of Yb"

Summary

Quantum Simulation of Strongly-Correlated System

dual Mott insulator of Boson and Fermion SU(6) Mott insulator high-resolution spectroscopy of SF-Mott insulator transition

Resonant Control of Interaction:

anisotropy-induced Feshbach resonance between ${}^{1}S_{0}$ and ${}^{3}P_{2}$ states

Prospects:

Lieb lattice: *implementation of 2D super-lattice* Quantum Gas Microscope: *fluorescence imaging with dual molasses* YbLi: optical lattice setup for impurity problem spin-Orbit Interaction

Thank you very much for attention

16 August Mount Daimonji at Kyoto