Superstring Theory, M-theory and the Dynamics of Branes

2013. 2. 13

Kazuo Hosomichi

1

(String) Dualities

- -- Quantum equivalence relations among seemingly different (superstring) theories.
- -- Often relates

Unification of 5 different superstring theories

M-theory (Witten 1995)

In the strong coupling limit ($g_s \to \infty$) of IIA string theory, the 11th dimension shows up.

membrane : (2+1)D object

M-theory (Witten 1995)

-- No intrinsic definition.

-- The only parameter is Newton's constant. unique (=ultimate) theory.

$$G = \frac{1}{32\pi^2} (2\pi\ell_{\rm P})^9$$

 ℓ_P : Planck length

- -- Reduce to 11d supergravity at low energy
- -- Fundamental objects are
 * membranes: (2+1)D object
 * M5-branes: (5+1)D object

11D Supergravity

$$S = \frac{1}{16\pi G} \left[\int \mathrm{d}^{11} x \sqrt{-g} R - \frac{1}{2} \int F \wedge *F - \frac{1}{6} \int C \wedge F \wedge F + \cdots \right],$$

Membrane : electric charge of C

M5-brane : magnetic charge of ${\it C}$

Today's Topic

Recent developments in the study of collective dynamics of **M5-branes**.

Collective Dynamics of Branes

N coincident **D-branes** (=solitonic objects in superstring theory) give rise to U(N) gauge symmetry.

The theory of N coincident **membranes**

= 3D U(N) x U(N) SUSY Chern-Simons gauge theory. (2008)

What about coincident M5-branes?

(2,0)-Theory = Theory of Multiple M5-branes

-- 6D field theory with no Lagrangian

 -- labeled by N = number of M5-branes, (more precisely, by ADE groups) no other coupling constants.

-- Many low-dim field theories arise Upon compactification

$$S = \frac{1}{2g_{(5)}^2} \int d^5 x \operatorname{Tr} \left(-F_{\mu\nu} F^{\mu\nu} + \cdots \right)$$
$$F_{\mu\nu} \equiv \partial_\mu A_\nu - \partial_\nu A_\mu - i[A_\mu, A_\nu]$$

What if we change the order of compactification?

coupling:
$$\frac{1}{g_{(4)}^2} = \frac{R_1}{4\pi R_2}$$

4D SUSY Y-M at the two different couplings are the same !?

Montonen-Olive Duality

4D (Max SUSY) YM has a hidden equivalence which inverts the coupling and exchanges electric/magnetic particles.

cf) electromagnetism $e \cdot m = 2\pi$

$$\nabla \cdot \mathbf{E} = \rho \qquad \nabla \times \mathbf{E} + \frac{\partial}{\partial t} \mathbf{B} = 0$$
$$\nabla \cdot \mathbf{B} = 0 \qquad \nabla \times \mathbf{B} - \frac{\partial}{\partial t} \mathbf{E} = \mathbf{j}$$

M5-branes can explain Montonen-Olive duality from simple geometry of 2D torus.

Shape vs. Coupling

More general torus

$$\mathbb{R}^{1,3} \times T^2 \longrightarrow \text{4D SUSY Yang-Mills}$$

shape: $\tau \in \mathbb{C}$ Complex coupling: $\tau = \frac{\theta}{2\pi} + \frac{4\pi i}{g^2}$

$$S = \int d^4 x \operatorname{Tr} \left(\frac{1}{2g^2} F_{\mu\nu} F^{\mu\nu} + \frac{\theta}{32\pi^2} \varepsilon^{\mu\nu\lambda\rho} F_{\mu\nu} F_{\lambda\rho} + \cdots \right)$$
(Instanton density)

Montonen-Olive:

The theory at au and at -1/ au are the same.

Further Generalization (Gaiotto 2009)

(We discuss the case of 2 M5-branes today)

Wrapping 2 M5-branes on $\boldsymbol{\Sigma}$

 $\mathsf{Shape}:\tau$

* includes the position of punctures

Spike angle at P_a : m_a

 \longrightarrow **4D** gauge theory $T_2(\Sigma)$ (Gaiotto 2009)

UV finite theory with $\mathcal{N}=2$ SUSY.

 τ (shape) = gauge coupling(s)

 m_a (spike angles) = mass of matter particles

To read off the Lagrangian,

go to the limit where Σ looks like a network of thin tubes.

[example]

 $SU(2)^{10}$ gauge symmetry

from 2 M5-branes wrapping 10 thin tubes.

However,

For any given Σ , there are several weak coupling limits.

[example] 4-punctured sphere

3 different, mutually dual Lagrangians.

AGT Relation (Alday-Gaiotto-Tachikawa 2009)

"Mysterious agreement"

cf) Liouville CFT

Coupling : b

Lagrangian : $\mathcal{L} = (\partial_t \phi)^2 + (\partial_x \phi)^2 + e^{2b\phi}$

AGT Relation (Alday-Gaiotto-Tachikawa 2009)

The conjectured relation has been confirmed

through the comparisons of <u>exactly calculable</u> quantities

Correlation functions in 2D CFTs

-- systematic construction have long been known.

Partition function of SUSY theories on sphere

-- "SUSY localization theorem" allows exact evaluation. (hot topic in recent years)

Interpretation

 $Z(m_a, \tau)$: Partition function of

4D gauge theory $T_2(\Sigma)$ on round 4-sphere

 \rightarrow 2 M5-branes wrapping $\Sigma \times$ (4-sphere)

changing the order of compactification,

 \rightarrow A 2D field theory on Σ

Correlation function : $\langle V_{m_1}(P_1) \cdots V_{m_n}(P_n) \rangle_{\tau}$

Since it depends only on the shape au of Σ ,

the 2D theory should be conformal.

AGT Relation (Alday-Gaiotto-Tachikawa 2009)

Checking the agreement for different choices of Σ led to the claim

2 M5-branes wrapping on 4-sphere = Liouville CFT (at b=1)

* A_1 Toda CFT = Liouville CFT

Summary

(2,0)-theory = Theory of multiple M5-branes

We cannot write Lagrangian for it but we are sure it exists.

- -- Upon compactification,
 - it gives rises to various low-dim gauge theories, and provides geometric explanations of how dualities of low-dim gauge theories work.
- -- It predicts precise correspondences between field theories in different dimensions.

Summary

Through the study of (2,0)-Theory,

We became increasingly aware there are many important "non-Lagrangian" theories in different dimensions (not only in 6d).
We became interested in various new "exactly calculable" quantities.
(Collecting such quantities will be as good as writing down the Lagrangian)