X-Ray Observations of Active Galactic Nuclei with Relativistic Jets

Fumie Tazaki

(D2: Department of Astronomy, Kyoto U.)

Co-Evolution of Galaxy & Central Black Hole

Almost all galaxies have supermassive black hole. $M_{BH} = 10^{6} - 10^{9} M_{solar}$ (M_{solar} = 2x10³³ g)

Correlation of black hole mass and galaxy mass

Important factor to clear the galaxy evolution

X-ray Study of AGN with Relativistic Jets

What is the difference between AGNs with jets and without jets?

Inner part of accretion disk

Relativistic space close to black hole

Surrounding torus structure

Key of black hole growth and galaxy evolution

Study of AGN with Jets

Targets of AGNs with Jets

4C 50.55 (type 1); bright source Tazaki et al. (2010), ApJ, 721, 1340 Physical properties of hot corona.

Accretion disk geometry.

3C 403 & IC 5063 (type 2) Tazaki et al. (2011), ApJ, 738, 70 Torus geometry and amount of scattering gas.

3C 206 (type 1) & PKS 0707-35 (type 2);

luminous source

Tazaki et al. (2013), ApJ, submitted

Detailed study of torus geometry in the luminous AGN with Jets. (Unknown relation between the AGN structure and the central engine power.)

Torus Structure of Luminous AGNs

Summary

~ X-Ray Study of AGN with Relativistic Jets ~

- Study of active galactic nuclei (AGN) spouting jets with X-ray satellite *Suzaku*.
- AGNs with jets (possibly):
 - have truncated accretion disk (bright AGN; 4C 50.55)
 Related to the mechanism of jet ejection (?)
 - have a trend that luminous AGNs have small torus (luminous AGNs with jets; 3C 206 and PKS 0707-35).
 Central source irradiation → Torus evaporation (?)

We need statistical study with larger sample!!