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Formation mechanisms of single, twin and double hypernuclei from Ξ− absorption at
rest on 12C are investigated with a refined microscopic transport model that incorporates the
recently developed quantal Langevin treatment into antisymmetrized molecular dynamics.
With a choice of the fluctuation strength that describes dynamical fragmentation processes
in the p + 12C reaction at 45 MeV quite well, the quantum fluctuations suppress the for-
mation probability of double hyperfragments to around 10%, which is comparable to the
experimental data, and the dynamical formation of twin hyperfragment can be described
qualitatively.

§1. Introduction

Among various nuclear fragmentation processes, the hyperfragment formation
from the Ξ− absorption reaction at rest is of primary importance for understanding
strangeness in nuclei. First, Ξ− absorption is the most effective and the most direct
way to produce double Λ nuclei. For example, all three double hypernuclear forma-
tion events in which ∆BΛΛ is extracted have been discovered through Ξ− absorption
on light nuclear targets.1)–3) Double hypernuclei give us valuable information con-
cerning the low-energy Y Y interaction, and they might represent a doorway to the
study of multi-strangeness systems, such as those consisting of strange baryon mat-
ter, which are expected to be realized in neutron stars.4) Because of this importance,
further experimental searches for double hypernuclear formation through Ξ− absorp-
tion are being carried out at BNL and KEK.5)–7) In these experiments, the number
of stopped Ξ− is expected to exceed the existing data by an order of magnitude.
Therefore, theoretical studies of the Ξ− absorption reaction and the resulting frag-
mentations are urgently needed. Second, in the KEK E176 experiment, one finds
interesting fragmentation patterns, such as Ξ− + 12C → 4

ΛH + 9
ΛBe, in which two
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single hypernuclei are formed.8),9) This kind of reaction is referred to as ’twin single
hypernuclear formation’. It can be regarded as a fission of an S = −2 system or
an exotic decay, which is unexpected in light nuclei. Therefore it may suggest some
special characteristics of strangeness in nuclei.

In KEK E176, the estimated number of Ξ− absorption events at rest on light
targets is 31.1 ± 4.8, among which one double hyperfragment formation event and
two twin single hyperfragment formation events were observed.10) In addition, the
authors of that work found one event in which S = −2 hadronic system is formed
(event type (B) in Table I), eight single hyperfragment formation events, and eight
other events, in which the visible energy release is greater than 28 MeV (event type
(C) in Table I). By using these experimental observations, the lower limits (90%
confidence level) of S = −2 and S ≤ −1 sticking probabilities were estimated as
4.8% and 47.6%, respectively.10) In a similar way, we can estimate several lower and
upper limits of hyperfragment formation probabilities, as shown in Table II.

Table I. Observed stopped Ξ− events captured in light nucleus. In events (A), the hyperfragment

type (double, twin, or single) is specified. In events (B), a hadronic system with S = −2 is

formed (double or twin), and at least one hypernuclear weak decay must occur in events (C)

(S = −1 or −2).

Hyperfragment (A) (B) (C)
S = −2

S = −1

Double
Twin
Single

1
2
8

}
+ 1

}
+ 8

Table II. Estimated lower and upper limit (90% confidence level) by using the number of events

shown in Table I. For the roughly estimated values, see the text.

Hyperfragment L. L. (%) U. L. (%) Rough Est. (%)
Double
Twin
Single

No Hyp. Frag.

−
0.66
14.5
−

}
4.810)

}
47.610)

77.9
81.5
−

48.8

3− 9
6− 18
26− 73
−

These upper and lower limits are values which we must respect. However, the
statistics are so poor that the constraints on the theory are very loose at present.
Therefore, in this paper, we use very crude but plausible estimates of double, twin
and single hyperfragment formation probabilities as follows. One extreme would
be to consider that there were no double and twin hyperfragment formations other
than the specified ones. Then the double, twin and single hyperfragment formation
probabilities can be estimated as 3% (= 1/31.1), 6% (= 2/31.1) and 26% (= 8/31.1),
respectively. Another extreme is to assume that all the weak decay accompanied by
charged particles are observed, and the ratio among the double, twin and single
hyperfragment formation is maintained. Under this assumption, the probabilities
might be estimated as 9% (= 1/11), 18% (= 2/11) and 73% (= 8/11), respectively.
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We should note that the probabilities of twin and double hyperfragment formation
are comparable.

Various analyses of the Ξ− absorption reaction have been carried out. These
studies range from statistical approaches to direct reaction theories. However, no
satisfactory consistent description of double and twin hyperfragment formation has
been given yet. With statistical decay models of the double hyperon compound nu-
cleus,11) the calculated double hyperfragment formation probability is too large in
comparison with that of twin hyperfragment formation, provided that the ΛΛ inter-
action is attractive. Although the relative ratio of double- and twin-hyperfragments
is improved if the ΛΛ interaction is assumed to be repulsive, this assumption contra-
dicts previously observed double hypernuclei.1) Thus the experimental data suggest
the action of some dynamical effects that cannot be accounted for by a simple escape
probability of one Λ particle after the primary elementary reaction, Ξ−p → ΛΛ. On
the other hand, Yamada and Ikeda have proposed an intuitive direct fragmentation
picture which is based on the symmetry of the target (12C) wave function.12),13)

In this picture, when proton s-hole and p-hole states are created in the primary
elementary reaction and a highly excited double hypernuclear state is formed, it is
fragmented mainly in the doorway stage to various hypernuclei by emitting some
nucleons or clusters. Following this picture, they find that the excited channels of
12
ΛΛBe + p, 12

ΛΛB + n and 11
ΛΛBe + d are produced more strongly than other chan-

nels, and the calculated S = −2 sticking probability is in agreement with the KEK
E176 experiment. However, this model still underestimates the twin hypernuclear
formation probability.13)

The aim of this paper is to investigate the formation mechanism of single, twin
and double hypernuclei from Ξ− absorption at rest on 12C by applying a recently
developed microscopic transport model that augments the antisymmetrized molec-
ular dynamics (AMD) model14) with the effect of quantum fluctuations as given by
the quantal Langevin model.15)–17)

The microscopic transport approach can describe a variety of processes, from
fast reactions, such as quasi-free processes that are mainly determined by elemen-
tary two-body collisions, to more central reactions, where bulk collective motion
occurs and the mean-field dynamics is important. In addition, combined with sta-
tistical decay models, the light-particle evaporation from moderately excited nuclei
can be described. Since we would like to extract the contribution of dynamical pro-
cesses to the hyperfragment formation from the Ξ− absorption, the applicability to
both dynamical and statistical processes is an important advantage of the transport
approach.

Among various microscopic transport models, AMD and fermionic molecular
dynamics (FMD)18) take account of the fermionic nature of baryons by using anti-
symmetrized wave packets. This feature makes it possible to describe fragmentation
processes due to cluster and nuclear shell effects,14), 18)–20) which are important for
the study of light nuclear systems, including hypernuclei.21) In particular, two-body
collision processes, which are indispensable for the description of nuclear reactions,
are incorporated into AMD. Because of these advantages, we adopt AMD combined
with the statistical decay model as the starting point for studying Ξ− absorption
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reactions.
However, even if anti-symmetrized wave packets are employed, the use of product

wave functions, whether of a Gaussian form or the Hartree-Fock type, has certain
generic shortcomings that may be of specific importance in the present context. In
particular, it is usually difficult to describe the dynamical formation of ground-state
fragments in the outgoing state. This point has been noted previously and some
remedies have been proposed.14), 23), 24) In the hyperfragment formation problem,
for example, Nara et al. suggested the necessity of the direct productions K−+α →
π0 + 4

ΛH in the K− absorption reaction at rest on clusterized light nuclear targets
which cannot be described with only two-body collision terms.24)

Another possibly important problem of microscopic transport models concerns
the inherent fluctuations associated with wave packets. When the functional space
of single-particle wave functions is restricted to Gaussian forms and the system is de-
scribed by a single Slater determinant, the neglected degrees of freedom are expected
to cause fluctuations of the retained degrees of freedom. In the context of the proper-
ties of equilibriated systems, a treatment of this inherent problem has been proposed
recently by Ohnishi and Randrup in the form of the Quantal Langevin model.15)–17)

With the development of this model, they have discussed the importance of the fact
that wave-packet wave functions are not eigenstates of the Hamiltonian operator and
thus possess inherent energy fluctuations that affect the statistical properties signif-
icantly. They have also shown that with the same quantum fluctuations one can
improve the description of fragment formation processes in heavy-ion collisions.17)

The above-mentioned features may affect the fragmentation from the Ξ− absorp-
tion reaction. First, the observed twin hyperfragments are in their ground states or
low excited states. Next, if the excitation energy is shared among all the degrees
of freedom, each particle will have a smaller energy than the separation energy and
then particle evaporation and fragmentation may be artificially suppressed in molec-
ular dynamics calculations. For example, in the Ξ− absorption reaction, many large
excited fragments like 13

ΛΛB and 12
ΛB are produced in the dynamical simulation of

AMD, as discussed below. This consideration shows the importance of the quantum
statistical features, which enhance ground-state fragments, since internal degrees of
freedom of fragments are likely to be frozen, while the relative motions between
fragments are agitated.

In this paper, we focus our attention on the effects of the quantum fluctuations.
Specifically, we extend the usual AMD transport model to incorporate quantum
energy fluctuations in the manner of the quantal Langevin model. A problem of the
quantal Langevin model is that we cannot determine the form and the strength of
quantum fluctuations from statistical requirements. To this time, this problem has
not been seriously treated, since the model has been mainly developed for the study of
statistical properties and heavy-ion collisions where (approximate) equilibrium would
be realized. In order to adapt the model to nuclear reactions in which preequilibrium
dynamics is important, we have employed a phenomenologically parametrized form
of fluctuations and we carefully determine the strength of the quantum fluctuations
through the analysis of proton induced reactions which have excitation energies that
are similar to that of Ξ− absorption at rest on 12C. We call the resulting model AMD-
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QL. We will show that we can accurately describe dynamical fragmentation processes
in the p+ 12C reaction at 45 MeV when the fluctuation strength is sufficiently large,
and the application of AMD-QL to Ξ− absorption at rest on 12C leads to total
formation probabilities of various double hypernuclei of about 10% with the same
fluctuation strength.

This paper is organized as follows: We first briefly describe how we can incor-
porate quantum fluctuations in wave packet dynamics in the manner of the quantal
Langevin model in § 2. In § 3, we incorporate these quantum fluctuations into AMD
and give the form and strength of the fluctuations. Then we give our results for
hyperfragment formation in Ξ− absorption at rest in § 4. In § 5, we summarize our
work.

§2. Quantum fluctuations in wave packet dynamics

As mentioned in the Introduction, fluctuations are not fully incorporated in the
transport models describing the time evolution of wave packets based on the time-
dependent variational principle (TDVP). In a statistical context, this was pointed
out in Refs. 15)–17) and 30).

There are some claims that the statistical properties of the wave packet dy-
namics are quantal rather than classical when one adopts a reasonable temperature
extracted from the excitation energies and analyzes the wave packet wave function
itself through, for example, the single particle energy spectrum.25),26) However, this
kind of quantum statistics is not properly reflected in the fragment formation, since
the nucleon and fragment emissions are described by the centroid parameters of nu-
cleon wave packets, whose statistics is classical. Based on this consideration, the
same authors found possible origins of additional fluctuations or correlations to de-
scribe fragmentation processes, such as the momentum width in a single-particle
wave packet in evaporative processes,26),27) short-range correlations between nucle-
ons,28) or wave packet diffusion and deformation in the mean field,29) in addition to
stochastic two-body collisions.

However, it is still doubtful whether other dissipative phenomena, such as the
damping of nuclear collective motion, would be properly explained in these treat-
ments. This point is important, since nuclear collective motion has been thoroughly
studied, including origins of damping, and the fragmentation may be regarded as a
kind of large amplitude collective motion. It is well known that mean field theories
cannot explain the damping of nuclear collective motion, even if we incorporate two-
body collision terms of the Markovian type.41),42) Although the damping is partly
described by particle and fragment emissions, the main contribution comes from the
coupling to more complex and randomly propagating states such as 2p2h. According
to these knowledges, it is necessary to take into account other mechanisms, in addi-
tion to the mean field propagation, two-body collisions and evaporative processes, in
order to describe the damping properly. Even if we take into account the short-range
correlations either in a Brückner-type correlation or using a unitary transform, the
resultant Hamiltonian becomes a smooth function of wave packet parameters and
the damping may not be sufficient unless the transition to other wave packets are
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explicitly taken into account.
In this work, we do not specify the source of fluctuations, but instead we require

that the quantum statistical equilibrium is approached in the course of the time
evolution following the quantal Langevin model.15)–17) This approach has the merit
that the equilibrium properties are ensured. On the other hand, since the system
approaches the same equilibrium with any type of fluctuations within the quantal
Langevin model, we have to determine the form and strength of the fluctuations
separately to describe the dynamics. In this paper, we fix the form of fluctuations
based on some physical considerations and seek to determine the allowed range of
the fluctuation strength phenomenologically.

In this section, we briefly describe the quantal Langevin model and its appli-
cation to dissipative nuclear collective motion, simulated within a simple soluble
model, the Lipkin model.22)

2.1. Quantal Langevin model

The quantal Langevin model is designed to ensure that the equilibrium proper-
ties of the system are in accordance with quantum statistics. In the case of canonical
and microcanonical ensembles, the statistical properties are governed by the parti-
tion function and the microcanonical phase volume, respectively,

Z(β) = Tr
(
exp(−βĤ)

)
=

∫
dΓ Wβ(Z) , Wβ(Z) = 〈Z| exp(−βĤ)|Z〉 ,

(2.1)

Ω(E) = Tr
(
δ(E − Ĥ)

)
=

∫
dΓ WE(Z) , WE(Z) = 〈Z|δ(E − Ĥ)|Z〉 ,

(2.2)

where |Z〉 represents a parametrized and normalized quantum state, and
∫

dΓ |Z〉〈Z|
resolves unity. From these expressions, we see that the probability to find a state
|Z〉 is proportional to the statistical weight W(Z) = Wβ(Z) or WE(Z).

To produce the desired equilibrium distribution φ(Z; t) ∝ W(Z) ≡ exp(−F(Z)),
it is possible to adopt the fluctuation-dissipation dynamics described by, for example,
the Fokker-Planck equation,

Dφ(Z; t)
Dt

≡ ∂φ

∂t
+ {φ,H}P.B. = −

∑

i

∂

∂qi


Vi −

∑

j

Mij
∂

∂qj


φ , (2.3)

Vi = −
∑

j

Mij
∂F(Z)

∂qj
, (2.4)

where {qi} are canonical variables satisfying dΓ =
∏

i dqi, D/Dt represents the
time derivative along the classical path, and H denotes the classical Hamiltonian.
The second relation is recognized as the Einstein relation that follows from the
requirement that the equilibrium distribution be a static solution of Eq. (2.3). In
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numerical simulations, it is easier to treat the corresponding Langevin equation,
Dqi

Dt
≡ q̇i − {qi,H}P.B. = Vi +

∑

j

gijζj , (2.5)

where the fluctuation matrix g is related to the mobility tensor M through g ·g = M
and ζ(t) is white noise, ≺ ζ∗i (t) ζj(t′) Â= 2δij δ(t − t′). Here we have ignored the
diffusion-induced drift term.31) The R.H.S. of Eq. (2.5), which includes both an
average drift term and a stochastic diffusion term described with the white noise ζ,
is referred to as the quantal Langevin force, and it gives the energy fluctuations for
the system. This random force arises from the energy dispersion of each wave packet
and thus has a purely quantal origin. Numerically, Eq. (2.5) can be solved by the
finite difference method in which the white noise integrated over a short period ∆t
is treated as a random number following a complex normal distribution generated
independently in each time step, multiplied by

√
2∆t.

In practical applications, we use the ansatz for the statistical weight W(Z) by
applying the harmonic approximation.16) For example, the statistical weight in a
microcanonical ensemble WE(Z) is assumed to be a continuous Poisson distribution,

WE(Z) ∝ e−H/D (H/D)E/D

(E/D)!
= e−H/D (H/D)E/D

Γ (E/D + 1)
, (2.6)

D =
σ2

E

H , σ2
E = 〈Z|Ĥ2|Z〉 − 〈Z|Ĥ|Z〉2 , (2.7)

where the ground-state energy is subtracted from the energy expectation value H.
Here, D denotes a typical energy scale. Since this typical energy scale depends on
Z only weakly in many cases, the drift term can be simplified as

Vi = −βH
∑

j

Mij
∂H
∂qj

, βH =
H− E

σ2
E

, (2.8)

where βH denotes a state dependent inverse temperature modified by quantum cor-
rection.16) With this form of the drift term, the Einstein relation becomes manifest.
In addition, once the energy dispersion σ2

E is given, it becomes feasible to solve the
quantal Langevin equation without further complication.

In addition to the appearance of a random force in the equation of motion, we
have to take the intrinsic distortion of wave packets into account before making any
observation by using the wave packet ensemble. This point can be easily understood
by considering the definition of the statistical mean value of an observable Ô in a
canonical ensemble:

≺ Ô Â=
1
ZTr

(
Ô e−βĤ

)
=

1
Z

∫
dΓ Wβ(Z)

〈Z|e−βĤ/2 Ô e−βĤ/2|Z〉
〈Z|e−βĤ |Z〉

. (2.9)

Since the Boltzmann weight operator exp(−βĤ) cannot be treated as a c-number,
the distorted wave function |Z ′〉 = exp(−βĤ/2)|Z〉 is different from the original
evolving state, |Z〉. For example, the distortion operator exp(−βĤ/2) favors the
energy eigencomponent with smaller energies, and therefore the observed energy
Hβ = 〈Z ′|Ĥ|Z ′〉/〈Z ′|Z ′〉 is smaller than H = 〈Z|Ĥ|Z〉/〈Z|Z〉.16), 17), 32)
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<H>
E0

E

t
(t)

(Z)W

(Z)EW

(Z’)EW E0

Fig. 1. Fluctuation of the energy expectation

value. In the quantal Langevin treatment

with a specified energy E0, the expectation

value with respect to the evolving state |Z〉
fluctuates (if that wave packet has a com-

ponent of the eigenstate with energy E0).

However, any observation involves the dis-

torted state |Z′〉 = exp(−βĤ/2)|Z〉.

When the total energy E0 is spec-
ified, the wave packets are distributed
according to the weight WE0

(Z) in the
quantal Langevin model, as is shown
schematically in Fig. 1. Thus the expec-
tation value of the Hamilton operator
with the evolving state |Z〉 can fluctuate
around the specified energy. The differ-
ence between the evolving state |Z〉 and
the distorted state |Z ′〉 explains why
this fluctuation of energy is allowed:
When we make any observation, we
have to use expectation values with the

distorted state |Z ′〉 =
√

δ(E0 − Ĥ)|Z〉,
which is an energy eigenstate with the
eigenvalue E0. Therefore, there is no

fluctuation in the observed energy, while the fluctuation of the energy expectation
value with respect to the evolving state is necessary. We discuss this point in the
next subsection.

2.2. Application to the Lipkin model

In equilibrium, the quantal Langevin model has been shown to work very well
and predict reasonable statistical properties, including the quantum statistical fea-
tures of simple soluble systems and nuclei.15)–17), 30) In a dynamical context, the
fragmentation processes in heavy-ion collisions have been studied.17) However, since
exact dynamical results are not available, the model has not been verified as a gen-
eral theory to describe fluctuation-dissipation dynamics. In particular, it has been
argued that the energy fluctuation of the evolving state is virtual and possesses no
physical meaning.43) In order to examine this aspect, it may be instructive to employ
a schematic model, such as the Lipkin model,22) to study the damping of collective
motion, since this is one of the most familiar type of dissipative phenomena in nu-
clear physics. In order to clarify the meaning of energy fluctuations in the evolving
state, here we focus our attention on large amplitude motion for which the energy is
close to the potential barrier height.

The Hamiltonian operator of the Lipkin model,

H = ε K0 − 1
2

V (K+ K+ + K−K−) , (2.10)

contains only the quasi-spin operators

K0 ≡ 1
2

N∑

n=1

(
c†+m c+m − c†−m c−m

)
, K+ ≡

N∑

n=1

c†+m c−m , K− ≡ (K+)† . (2.11)

Therefore, the collective subspace that couples to the unperturbed ground state |0〉
completely decouples from other subspaces. Within this collective subspace, the
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wave packet specified by the complex parameter z,

|z〉 ≡ exp(zK+)|0〉 , (2.12)

describes a general product wave function which couples to |0〉. We study the damp-
ing of collective motion through the time evolution of this wave packet by using the
following quantal Langevin equation for the canonical variable w = z

√
N/(1 + z̄z):

Dw

Dt
= ẇ − 1

i~
∂H
∂w̄

= −βH g2 ∂H
∂w̄

+ g ζ , (2.13)

H =
〈z|Ĥ|z〉
〈z|z〉 , g2 =

g2
0σE

~
, σ2

E =
∂H
∂z

C−1 ∂H
∂z̄

, C =
N

(1 + z̄z)2
. (2.14)

When we solve this equation in z space, there naturally appears an N dependence
in the coefficient, g2

z ' g2 σE/N~, to lowest order of z, which comes from the trans-
formation between z and w. We have checked that the qualitative features of the
results given below do not depend on the detailed structure of this coefficient g2

z ,
such as its small-z dependence, if this N dependence is preserved.

By using the Langevin Eq. (2.13), we have generated the ensemble of evolving
paths. At each time, we have calculated the ensemble average of the operator K̂+

with the distorted wave function, while keeping the evolving state unchanged. The
distorted wave function is obtained by solving the cooling (or heating) equation,
dz/dτ = −C−1∂H/∂z̄, until the expectation value reaches the initially given value.17)

The strength of the potential is chosen to keep the average potential effect constant.
Namely, the parameter χ ≡ V (N − 1) /ε is chosen to be independent of N . When
this parameter is less than unity, the potential energy surface has only one well,
while it becomes a double-well shape for χ > 1. As typical examples, in Fig. 2 we
show the calculated results with χ = 1.5 and 0.8, N =10, 30 and 100, and the initial
condition z(t = 0) = 0.8. The fluctuation strength parameter for the results given is
g0 = 0.3. However, the qualitative behavior does not change over the wide range of
this parameter 0.1 ≤ g0 ≤ 0.5 at this initial amplitude.

In Fig. 2, we display the time development of 〈ReK+〉, which is related to the
collective coordinate. For comparison we also display the exact solution and the
results of TDVP by using the above product type wave function. Since this wave
function describes a general product wave function, the results of TDVP are nothing
but those of the time-dependent Hartree-Fock (TDHF) method. The exact solution
exhibits interesting behavior. At χ = 1.5, the collective motion is gradually damped
at larger N , while for N = 10 the collective variable becomes larger again owing to
the interference between some specific energy eigencomponents. In addition, we can
see some hardening of the collective mode at smaller N . For example, one period
becomes much smaller than that for the TDHF results.

The quantal Langevin model results exhibit behavior similar to that of the ex-
act solution, although it is impossible to treat the interference between some specific
energy eigencomponents which agitates the collective motion again after several peri-
ods. The average damping width seems to be accurately reproduced, and more than
half of the hardening of this mode is explained. On the other hand, the TDHF result
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Fig. 2. Damping of collective motion in the Lipkin model. Solid, dotted and dashed curves represent

the exact solution and the results of TDHF and the quantal Langevin model, respectively. The

left (right) panels are the results with χ = V (N − 1)/ε = 1.5 (0.8), leading to a double (single)

potential well. For comparison, the bottom-right panel depicts the case of the pure harmonic

oscillator (one Gaussian wave packet in a harmonic oscillator potential).

exhibits a pure periodic motion, since there is only one complex degree of freedom
in this wave packet. If the potential strength parameter χ is kept constant, there is
no room for N to play a role in TDHF. Therefore, the results of TDHF indicates the
limit of N →∞ without any damping.

Within the quantal Langevin model, the above-mentioned damping and hard-
ening can be explained as follows: Each wave packet |z〉 has its inherent energy
fluctuation σE, which is proportional to

√
N , and in the quantal Langevin treat-

ment, the energy expectation value of this evolving state can fluctuate around the
specified energy with an amplitude on the order of this intrinsic energy fluctuation.
Therefore, each wave packet will have a different energy expectation value and fre-
quencies and, as a result of the ensemble average, the collective motion is damped.
The hardening of the collective mode can be explained similarly. In the case of χ =
1.5 there is a barrier in the potential energy surface at Re(z) = 0, and the energy
of the initial state adopted here is just above this barrier height. In the quantal
Langevin treatment, some of the evolving paths are trapped by this barrier and re-
turn to the neighborhood of the initial state much earlier than the classical motion.
The first peak of the collective variable for N = 10 comes from these evolving states.
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These features may be related to the strange behavior of collective motion around
the bifurcation point.

When N becomes larger, the importance of the above-mentioned intrinsic energy
fluctuation σE ∝ √

N relative to the specified energy E ∝ N becomes smaller.
Therefore the damping and the hardening of the mode become smaller.

In the semi-harmonic case χ = 0.8 the situation is similar. The quantal Langevin
model describes the damping well, but since the potential energy surface is a single
well and there is no trapping by the barrier, the behavior of the collective variable is
very regular, and the damping width becomes smaller. As a limit, we can consider
pure harmonic motion. For example, we show in the right-bottom panel of Fig. 2
the time evolution of 〈a†〉 in the case of one wave packet in a harmonic oscillator
potential. In this case, TDHF (equivalent to AMD in this case) gives the exact
solution of the time-dependent Schrödinger equation, while the quantal Langevin
model still gives a small damping. However, this small damping occurs in a special
situation and becomes visible only after many periods. Thus it is not a big problem,
since we are interested in the bulk behavior of dissipative systems such as nuclei.

The examples considered here correspond to large amplitude nuclear collective
motion, in which the wave packets spread over various energy eigen-components.
In these cases, statistical assumptions made here, such as the Poissonian form of
the energy eigen-component distribution (2.6) and the strength of the fluctuations
g ∝ √

σE , Eq. (2.14), are considered to be valid. On the other hand, we find that
at very small amplitude, where only the first excited state mixes with the main
ground state component, we have to reduce the fluctuation strength to reproduce
the behavior of the exact solution. In this case, there is essentially only one frequency
ω1 − ωg.s. which generate the time evolution, and only a small damping can be seen
in the exact solution. However, the energy fluctuation σE in the wave packet is still
finite, and the collective motion is forced to damp under the assumption g ∝ √

σE

in the quantal Langevin treatment. Therefore, we have to take special care of the
fluctuation strength when the system is close to the ground state. We will mention
this point in applying the quantal Langevin model to nuclear fragmentation in the
next section.

§3. Antisymmetrized molecular dynamics with quantal Langevin force

3.1. Implementation of the quantal Langevin force into AMD

In AMD, the quantum states are constructed using the following Slater deter-
minant of Gaussian wave packets:14)

|Z〉 =
1√

A! detB
det

(|zi(rj)〉
)

, (3.1)

|zi(rj)〉 =
(

2νi

π

)3/4

exp
[
−νi(rj − zi/

√
νi)2 +

1
2
z2

i

]
χi(j) , (3.2)

Bij = 〈zi|zj〉 . (3.3)
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Here χi represents the spin-isospin wave function, and the parameter νi is (inversely)
related to the variance of the Gaussian wave packet; both are assumed to remain
constant in time. For nucleons we use νN = 0.16 fm−2. We have included Λ and
Ξ− particles in the framework of AMD, and the width parameters for these particles
are chosen to be νY = (mY /mN )νN , where mY and mN are masses of the hyperon
and nucleon, respectively. This prescription makes it possible to factorize the center-
of-mass wave function. The real and imaginary parts of the parameter {zi} of the
Gaussian wave packet (3.2),

zi =
√

νidi +
i

2~√νi
ki , (3.4)

represent the mean position di and the mean momentum ki, respectively. Applying
the time-dependent variational principle to total wave function |Z〉,

δ

∫
dt 〈Z|i~ ∂

∂t
− Ĥ|Z〉 = 0 , (3.5)

we obtain the equation of motion for the parameters {zi},
Dzi

Dt
≡ żi − i

~
Fi = 0 , (3.6)

F i = −
∑

j

C−1
ij

∂H
∂z̄j

, (3.7)

Cij =
∂2

∂z̄i∂zj
log detB . (3.8)

Here, H = 〈Z|Ĥ|Z〉 is the expectation value of the total energy.
We can construct the quantal Langevin equation based on the AMD wave func-

tions as before, although there are several points that require special consideration.
The first problem is the treatment of the zero-point CM kinetic energies of frag-
ments.14), 18), 33) Since this fragment zero-point CM kinetic energy is proportional to
the number of fragments and does not disappear even in the asymptotic region, it
modifies the Q value of fragmentation and suppress fragmentation artificially. This
fragment zero-point CM motion also affects the energy dispersion. For example,
when one isolated fragment moves, the strength of the energy fluctuations grow as a
linear function of the translational kinetic energy of this fragment. In wave packet
dynamics with product-type wave functions, where the fragment CM motion is de-
scribed by a wave packet, these zero-point kinetic energies are indispensable. How-
ever, if we consider a superposition of the wave packets with respect to the impact
parameter and time in order for the incident wave function be a plane wave as in ac-
tual reactions, then the relative phases of this superposition are maintained in time,
and the zero-point CM kinetic energies of the fragments disappear in the asymptotic
region. Therefore, the above-mentioned effects are spurious and should be removed
from the Hamiltonian as well as from the energy dispersion. Several prescriptions for
subtracting fragment zero-point CM kinetic energies have been proposed.14),18), 33)
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As for the calculation of the energy dispersion, we remove these effects by subtracting
the local average velocities and forces acting on the wave packets,

σ2
E =

∑

ij

F̄ ′
i · Cij · F ′

j , (3.9)

F ′
i = F i − γ

ni

∑

k

fikF k , (3.10)

where fij denotes the “friendship” function which is used to subtract the fragment
zero-point CM kinetic energies as described later in § 3.2, ni is the mass number
of the fragment to which the i-th nucleon belongs, and we use γ = 1. With this
subtraction, the energy fluctuations are correspondingly reduced, thereby ensuring
that the fluctuations disappear when all the fragments have become cold.

The second problem concerns the expression of the fluctuation matrix g. If we
were to adopt a simple constant matrix g having only diagonal terms as in the Lipkin
model, the fluctuation causes some unphysical effects such that both the translational
motion and the intrinsic motion of isolated fragments close to their ground states
would be affected. This is partly because we estimate the energy dispersion not of
each fragment, but of the total system: For a ground state fragment, the energy
dispersion of its intrinsic motion should be zero, while the energy dispersion of the
total system (σE) can be finite and can cause finite fluctuations. In addition, as
mentioned in the previous section, the statistical assumption g ∝ √

σE would not be
valid around the ground state. Based on these considerations, we introduce the off-
diagonal matrix elements between the nucleons nearby as described below, in order
to remove the unphysical effects caused by the simplest constant diagonal fluctuation
matrix.

The fluctuations of the translational motion of fragments or clusters can be
removed by adopting a fluctuation matrix of the form

gij ∼ δij − 1/AF , (3.11)

where AF is the mass number of the fragment to which the nucleon belongs. On
the other hand, the intrinsic (or relative) motion between nucleons is not affected
when the same fluctuations are added. Then, we can remove the fluctuations of
the intrinsic (or relative) motion of fragments or clusters by requiring that all the
matrix elements of g are similar within isolated fragments produced in the nuclear
reaction and clusters which form nuclei near the ground state. In order to satisfy
both requirements approximately, we employ the matrix g,

gij = g0

(
σE

~
√

A

)1/2
(

f̃ij√
qiqj

− fij√
ninj

)
, (3.12)

f̃ij = exp

(
−νN

∣∣∣∣
wi√
νi
− wj√

νj

∣∣∣∣
2
)

, (3.13)

which contains off-diagonal parts reflecting single-particle overlaps, where qi =
∑

k f̃ik.
In this form, the diagonal part in Eq. (3.11) is replaced by a narrow Gaussian, and
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the constant part for each fragment is replaced by a normalized friendship function
having a larger width. With this form, the matrix elements of g become almost zero,
and the energy of a fragment close to its ground state is unaffected by the fluctuation.
In general, the fluctuations can possess anisotropy and phase space correlations29)

which we have ignored in this work. Here we have introduced one free parameter
g0, which governs the overall strength of the fluctuation matrix. We determine the
value of this free parameter in § 3.4.

The quantum fluctuations added here do not break clusters in nuclei. Since the
microscopic cluster wave functions are known to describe most of the low lying states
of light nuclei under consideration,44) and at high excitations, clusters in nuclei are
expected to be broken mainly by two-body collision term, it is not necessary to break
clusters by fluctuations.

By using this fluctuation matrix, the quantal Langevin force is implemented into
AMD as

żi =
i

~
F i + βH

∑

kl

gikgklF
′
l +

∑

k

gikζk . (3.14)

In addition to introducing a stochastic force into the equation of motion, the
quantal Langevin model requires that the intrinsic distortion of wave packets be
taken into account in order to project the state to the appropriate energy shell
before making any observation.16),17), 32) In the case that the energy is specified, the

distortion operator
√

δ(E − Ĥ) is very complicated. Therefore, we have employed
the canonical distortion here. This can be done by using the cooling equation

żi = F ′
i (3.15)

to perform an imaginary-time evolution until the total energy expectation value
reaches the given energy. Although this cooling process influences the fragment
configurations in the final stage of the reaction only weakly, it reduces the fragment
excitation energy significantly, and energy conservation is completely satisfied after
this procedure.

3.2. Effective interactions

We use the following effective interactions in this work. For the NN interaction,
the effective interaction Volkov No. 134) with Majorana parameter m = 0.575 is used.
The zero-point kinetic energy (T CM) is subtracted from the Hamiltonian in the same
way as in Ref. 14). As a result, the total Hamiltonian is modified into the form

H = 〈Z|Ĥ|Z〉 − T CM , (3.16)
T CM = T0A− apT0(A−NF ) , (3.17)

NF =
∑

i

1
nimi

, ni =
∑

j

fij , mi =
∑

j

fij

nj
, (3.18)

fij = exp

(
−νt

∣∣∣∣
zi√
νi
− zj√

νj

∣∣∣∣
2
)

. (3.19)
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Table III. Binding energies of single hyper nuclei

Core nucleus 3H 4He 7Li 8Be 11B 12C

B(Core) cal. (MeV) 10.63 28.30 39.66 56.73 74.51 92.35

exp. (MeV) 8.48 28.30 39.25 56.50 76.21 92.17

Hypernucleus 4
ΛH 5

ΛHe 8
ΛLi 9

ΛBe 12
ΛB

B(A
ΛZ) cal. (MeV) 12.41 31.43 45.32 60.99 87.15

exp. (MeV) 10.52 31.42 46.05 63.27 87.58

SΛ cal. (MeV) 1.78 3.13 5.66 4.26 12.64

exp. (MeV) 2.04 3.12 6.80 6.77 11.37

Fragmentation to 3H+5
ΛHe 4He+5

ΛHe

Q values cal. (MeV) 3.26 1.26

exp. (MeV) 6.15 3.55

Here, T0 = 3~2ν/2M is the zero-point kinetic energy of a fragment, A is the total
mass number, and NF is the number of fragments appearing in the dynamical sim-
ulation. The parameters involved in the T CM are determined as νt = 0.1 and ap

= 0.772 in order to reproduce the experimental data of binding energies of normal
nuclei, as shown in Table III.

Other interactions (NΛ, ΛΛ) are assumed to be attractive Gaussian potentials,

vΛΛ = −90.12 exp(−0.935r2) , (3.20)
vΛN = −43.62(0.1− 1.0Pσ + 0.5Pr) exp(−0.935r2) . (3.21)

The range of the NΛ interaction is the same as that of two-pion exchange,21) and
other parameters are chosen to fit the experimentally known hypernuclear binding
energies of 4

ΛH, 5
ΛHe, 8

ΛLi, 9
ΛBe and 12

ΛB within AMD wave functions, as shown in
Table III. The largest ambiguity lies in the ΛΛ interaction, since information on
double hypernuclei is very scarce. We choose the parameter of the ΛΛ interaction
to fit the ∆BΛΛ of 13

ΛΛB (= 4.9 ± 0.7 MeV) obtained in KEK E176 experiment.3), 10)

In Table III we also show the Λ separation energies and the Q values of some
fragmentations that are relevant to this work. These energies are very important,
since they strongly affect the probabilities of Λ emission and decay into fragments in
the dynamical evolution. The adopted effective interactions reproduce the observed
separation energies within about 2 MeV, although the separation energies of light
clusterized nuclei (8ΛLi and 9

ΛBe) and their Q values of fragmentation (8ΛLi → 3H +
5
ΛHe, 9

ΛBe → 4He + 5
ΛHe) are underestimated by a slightly large amount because

of the limitation of the AMD wave function. We discuss the consequences of this
underestimate below.

3.3. Two-body collisions

Two-body collisions are also included by using the physical coordinate w.14) The
following elementary collisions are included in our calculations:

(1) N + N → N + N , (3.22)
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(2) N + Λ → N + Λ , (3.23)
(3) Λ + Λ → Λ + Λ . (3.24)

Here N = n, p. The NN cross sections are taken from experimental data. The
cross sections involving Λ are calculated by using the Nijmegen model D.35) This
model gives the coupling constants for Y N interactions and the cross sections for
N +Λ → N +Λ, assuming a short-range core (rc ∼ 0.5 fm) in all the baryon-baryon
channels. The cross sections for Λ + Λ → Λ + Λ can be obtained by extending the
model D to SU(3) symmetry and keeping the hard-core radius as rc = 0.5 fm.

3.4. Determination of the fluctuation matrix g through proton-induced reactions

Until now, we have left one free parameter g0, which gives the overall strength of
the quantal Langevin force. Although this parameter does not affect the statistical
properties at equilibrium, it gives the time scale of the relaxation to equilibrium.
Thus it has some effect on the dynamics, especially in preequilibrium processes such
as fast emission of particles and fragmentation. In this study, we determine the
allowed range of the strength parameter g0 in a phenomenological fashion, by ana-
lyzing the fragment production cross sections of the proton-induced reaction on 12C
at Ep = 45 MeV, which has an excitation energy (43.5 MeV) similar to that of Ξ−

absorption at rest on 12C (39.5 MeV).
The dynamical simulations were performed with AMD and AMD-QL up to the

time 200 fm/c. The decay of the excited fragments produced during the dynamical
stage are then treated by the multi-step binary statistical decay model referred to
as “Cascade”.37) In this manner, we obtain the fragment mass distribution.

First we investigate how the normal AMD combined with Cascade works in
describing the proton-induced reaction on 12C at 45 MeV. In the upper-left panel
of Fig. 3, we give the results of the AMD (histogram) and AMD plus Cascade
(open circles) calculations for the fragment mass distribution of p + 12C at 45 MeV.
At first glance it seems that the experimental data36) are reproduced reasonably
well. However, in the preequilibrium dynamical stage, which is described by AMD,
fragmentation is very rare. One nucleon emission from 12C, inelastic excitation of
12C, and formation of the compound nucleus 13N∗ are dominant, and most of the
intermediate-mass fragments are formed at the statistical decay stage, as discussed
in Ref. 38). This description may not be reasonable for the following two reasons.
First, the survival probability of the compound nucleus 13N∗ at the end of dynamical
simulation seems too large. The lifetime of the compound nucleus 13N∗ at E∗ = 43.5
MeV is around τ ∼ 59 fm/c in Cascade,∗) and the compound-nucleus formation cross
section is at most 300 mb, assuming that a grazing impact parameter of around 3
fm. Therefore, at the time t = 200 fm/c when the dynamical calculation ends,
approximately 5% of the compound nuclei 13N∗ can survive, which corresponds to
15 mb by using the above estimate and is well below the calculated value with AMD

∗) This lifetime becomes around 59, 25, 26 fm/c for level density parameters a = A/8, A(1 −
0.5A1/3)/8, A/10, respectively. Since this level density parameter is expected to be smaller in light

nuclei, the above estimate (τ = 59 fm/c from a standard value a = A/8) may be considered to be

the maximum value.
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Fig. 3. Calculated fragment mass distribution in the reaction p + 12C at 45 MeV compared with

experimental data. The histograms represent the calculated mass distribution at the end of the

dynamical stage, while the lines with points represent those after the subsequent statistical decay.

Dashed and solid lines correspond to AMD and AMD-QL, respectively, using g0 = 0.1 ∼ 0.5.

In the bottom-right panel, we compare the results of AMD and AMD-QL (g0 = 0.5) with

the Cascade results starting from pure compound nucleus formation 13N
∗

(dotted line). The

maximum impact parameter is taken to be 6.5 fm, which corresponds to a cross section of 1300

mb. The error bars indicate the experimental values.36)

(∼ 50 mb). The second reason is the lack of preequilibrium emissions. Basically,
Cascade describes the low-energy statistical decay of equilibrated excited nuclei, and
the angular distribution of the ejectiles is isotropic, or at least forward-backward
symmetric. However, at these incident energies the high energy fragment angular
distribution exhibits strong forward-backward anisotropy, as shown in the p + 27Al
(50 MeV) experimental data,39) caused by preequilibrium fragment production, even
in the continuum excitation energy range of residual nuclei.

Next we analyze p+ 12C at 45 MeV with AMD-QL plus Cascade and seek to de-
termine the allowed range of the parameter g0 by comparing the calculated fragment
mass distribution with data. In Fig. 3, we show the results of the AMD-QL (plus
Cascade) calculation for the fragment mass distribution of p+12C at 45 MeV with g0

= 0.1 ∼ 0.5. After the statistical decays we do not see significant differences among
the results of the AMD and AMD-QL calculations, and all of them reproduce the
data fairly well. However, the mass distribution in the dynamical stage (histograms
in Fig. 3) changes drastically when the value of g0 is changed. As the fluctuation
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strength is increased from g0 =0 (AMD) to g0 = 0.5, the compound nuclear survival
probability decreases, and dynamical fragmentation (mainly to α + 8Be and 3α) oc-
curs more frequently. We should note that AMD-QL can describe fragmentation to
intermediate-mass fragments at low excitation before statistical decay through the
effects of fluctuations around classical paths given by the quantal Langevin force.
Hence, the mass distributions before and after Cascade are similar, and direct pro-
duction of ground-state fragments is partly described with AMD-QL. On the basis
of this analysis of proton-induced reactions, we find the range g0 ≤ 0.5 for the fluctu-
ation strength parameter is suitable for reproducing the fragment mass distribution
after Cascade. For example, with g0 = 0.5, although the fragment cross section of
A = 6 is slightly underestimated, the fragment cross section of A = 11, where the
experimental error bar is very small, is accurately reproduced. Thus within the pa-
rameter range 0 ≤ g0 ≤ 0.5, the χ2 value becomes minimum at g0 = 0.5. In addition,
from the consideration of the lifetime of compound nuclei and the necessity of pree-
quilibrium fragment emission, values around g0 ∼ 0.5 seem preferable. Therefore,
we use values satisfying 0 ≤ g0 ≤ 0.5 in the following discussion, and mainly give
results with g0 = 0.5 as a typical strength.

It is also possible to describe the reaction p + 12C at 55 MeV with the same
value of the strength parameter g0. Detailed analysis of proton-induced and heavy-
ion reactions with AMD-QL will be reported elsewhere.

§4. Results for the Ξ� absorption reaction

We now apply the AMD-QL simulation, and the subsequent Cascade process,
to the absorption of Ξ− at rest on the nucleus 12C.

4.1. Initial condition

The initial wave function of the Ξ− hyperon is calculated by assuming the in-
teraction between Ξ− and 12C to be described by a Woods-Saxon potential and a
Coulomb potential as

U(r) = V0

[
1 + exp(

r −R

a
)
]−1

+ UCoul(r) , (4.1)

where R = r0A
1/3 denotes the nuclear size, and V0 is the potential depth. Here, we

ignore the effects of the imaginary part of V0 on the wave function. The size and the
diffuseness parameters are taken as r0 = 1.14 fm and a = 0.65 fm, respectively.

Once the Ξ− wave function is known, the absorption point of Ξ− is calculated
using the density overlap between Ξ− and the protons in 12C,

∂w

∂t
∝ ρp(r)ρΞ−(r) . (4.2)

It is noteworthy that this density overlap does not depend on the radial quantum
number n for higher ` if it is normalized, since it is sensitive only to behavior at the
nuclear surface. We assume that Ξ− always reacts with a proton in 12C and two Λ
hyperons are produced at the points where the Ξ− and proton existed. We neglect
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elementary reactions involving the Σ hyperon, since those channels are closed. This
elementary reaction is described by an ordinary collision term based on the canonical
variable w.14) The spins of the produced Λ hyperons are determined statistically. The
energy of the Ξ− absorption on 12C in the experiment in which twin hypernuclei
were discovered8),9) was accurately reproduced by a shallow potential (V0 = −16
MeV), and two events of twin hypernuclear formation, Ξ− + 12C → 9

ΛBe + 4
ΛH, are

interpreted as the reactions in which Ξ− is absorbed from a 2p state.9), 40) In this
study, we assume that Ξ− is absorbed from a 2p state and V0 = −16 MeV.

4.2. Hyperfragment mass distribution

We have made simulation calculations by using AMD and AMD-QL (g0 =0.1,
0.3, 0.4 and 0.5) up to t = 200 fm/c. A few thousand events were generated for
each value of the strength parameter g0. In the case of AMD-QL, we have taken the
effects of intrinsic distortion of wave packets into account at the end of the reaction
by the imaginary-time evolution given in Eq. (3.15). In this procedure, we have
ignored those events in which the total energy expectation value has not reached the
specified energy E0. In the statistical decay stage, the fragment mass and isotope
distributions are determined essentially by the Q values of the decay, the Coulomb
barrier, and the spin-degeneracy factor. Therefore, we have used the experimentally
known hypernuclear binding energies, if available. When these are not available, the
separation energies calculated by using the AMD wave functions are adopted. On the
other hand, the fragment excitation energies used as the inputs for the statistical
decay are calculated by subtracting the calculated ground-state energies in order
to avoid spurious effects arising from the difference between the calculated binding
energies in the model space and the experimental values.

In Fig. 4, we show the calculated single and double hyperfragment mass dis-
tribution in the Ξ− absorption reaction at rest on 12C using AMD and AMD-QL
combined with Cascade.

For the single-hyperfragment mass distribution, the situation is similar to the
case of the p + 12C reaction: With AMD, we only obtain formation of the 12

ΛB∗

compound nucleus through one Λ evaporation in the dynamical stage. Almost all
the single-hyperfragments are formed through the statistical decay of 12

ΛB∗ and 13
ΛΛB∗.

On the other hand, with AMD-QL, fragmentations occur more frequently, mainly
to 11

ΛB, 11
ΛBe, 8

ΛLi and 5
ΛHe, which have relatively large binding energies and have

stable fragmentation partners after one Λ emission. As the fluctuation strength g0 is
increased, dynamical fragmentation is enhanced. In addition, we can see some signals
of the dynamical effect in the single-hyperfragment mass distribution in AMD-QL
followed by Cascade. For instance, A = 10 (10

ΛBe and 10
ΛB) fragments are created

mainly through one nucleon (or Λ) evaporation from dynamically produced A =
11 single (or double) hyperfragments in AMD-QL followed by Cascade, but these
processes are not possible in AMD plus Cascade.

For the double hyperfragment mass distribution, the effects of quantal fluctua-
tions of AMD-QL are more evident. For instance, the production rates of A =11 and
12 double hyperfragments calculated with AMD-QL followed by Cascade are much
smaller than those of AMD plus Cascade. This difference comes from the compound
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Fig. 4. Calculated single and double hypernuclear mass distributions in Ξ− absorption reactions at

rest on 12C. Histograms in the upper, middle and lower panels display calculated results with

AMD, AMD-QL (g0 = 0.3) and AMD-QL (g0 = 0.5) after the dynamical stage,respectively.

Open circles (upper panel), squares (middle) and solid circles (lower) display the results with

AMD, AMD-QL (g0 = 0.3) and AMD-QL (g0 = 0.5) followed by Cascade, respectively. For

comparison, the upper panel also includes the results for AMD-QL (g0 = 0.5) followed by

Cascade.

nucleus 13
ΛΛB∗ formation probability at the end of the dynamical stage. (Although

the above difference looks small on a logarithmic scale, it is significant on a linear
scale, as seen from Fig. 6.) This formation probability is about 30% in AMD, while
it decreases to around 10% for g0 = 0.5 in AMD-QL. In other words, the Λ emission
probability is enhanced in AMD-QL.

The fact that the formation of long-lived double-hyperon compound nuclei occurs
so frequently in AMD can be explained as follows. In the initial stage of the Ξ−

absorption reaction, a proton in 12C is converted to a Λ, and the residual nucleus
becomes 11B∗. The separation energy of this proton is approximately 16 MeV, and
11B∗ is formed with about 6 MeV excitation in AMD. As a result, a large part of the
released energy in the elementary reaction Ξ−p → ΛΛ (28.3 MeV) is expended and
the energy available to the 2Λ system is very small (∼ 3 MeV/particle). In AMD,
the quantal fluctuations associated with wave packets are neglected, and the motion
of Λ is limited by the given small energy. Therefore, the formation of long-lived
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double-hyperon compound nuclei occurs more frequently in the AMD calculation.
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Fig. 5. Typical time development of the single-particle energies of the two Λ hyperons, as obtained

with AMD-QL (left) and AMD (right). The abscissa is the distance from the center-of-mass of

the system, and the ordinate is the single-particle energy. The solid circles indicate the initial

position of the hyperons at the time of the Ξ−p conversion to ΛΛ. The single-particle potential

energy of Λ with respect to 12
Λ B is indicated by the dotted curve. In the AMD-QL simulation,

the hyperons are kicked by the random force, and one is emitted (dashed trajectory in the left

panel). On the other hand, in AMD simulation, even the hyperon that initially had a positive

single-particle energy is absorbed into the hyperon compound nucleus due to the energy lost by

the collision with a resident nucleon (solid trajectory in the right panel).

In order to demonstrate the mechanism of Λ evaporation in the dynamical stage
of AMD-QL, we analyze the dynamical evolution of the single-particle energy of
each of the two produced Λ hyperons. Fig. 5 displays a typical time development of
two Λ hyperons in a projection showing the single-particle energy and the distance
from the center of the nucleus. The left (right) panel is for AMD-QL (AMD), and
the initial projections are indicated by solid dots. Since in AMD-QL the quantal
Langevin force continuously kicks the particles, one of the hyperons is occasionally
emitted towards the continuum region, leading to its evaporation from the highly
excited 13

ΛΛB∗ compound nucleus. In AMD-QL, this type of Λ evaporation process
dominates, and the double hyperfragment formation is suppressed. By contrast,
with the AMD simulation the hyperons steadily lose their energy, leading to their
eventual absorption into the compound nucleus. In this case two hyperons lose most
of their single-particle energy as a result of collisions with the nucleons. In AMD
this type of energy loss occurs frequently, and double-hyperon compound nucleus
formation therefore becomes more frequent.

It is interesting to compare the Ξ− + 12C reaction, in which two Λ hyperons
are produced, with the p + 12C reaction in which all particles are nucleons. In
the latter case we cannot tell from the mass distribution alone whether the particle
was emitted in the dynamical stage or in the statistical stage, because the incident
(leading) particle and the residents of the target nucleus are identical. Therefore,
the mass distribution does not depend on whether the ejectile is the leading particle
or arises from the target.
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On the other hand, in the Ξ− absorption reaction, the two leading hyperons
are different from nucleons, and we can tell whether the ejectile is one of those or
not. During the dynamical (or preequilibrium) stage, the probability for a leading
particle Λ to escape is larger than that for the resident nucleons. However, there is no
difference once equilibrium has been reached. Therefore, we may be able to determine
the contributions of the dynamical fragmentation and statistical fragmentation from
the Λ emission probability of the Ξ− absorption reaction.

4.3. Event type analysis

Table IV displays the dependence on the fluctuation strength parameter g0 of the
relative abundance of different event types: double-, single- and twin-hyperfragment
formation, as well as events with no hyperfragment formation. The AMD results
correspond to g0 = 0. As described in the previous subsection, quantum fluctuations
enhance preequilibrium emission of one Λ particle, while suppressing formation of
the double-hyperon compound nucleus 13

ΛΛB∗ (second column in Table IV). This fea-
ture also applies to emission of other particles. In the dynamical stage, the double
hyperfragment formation probability monotonically decreases, and two-Λ emission
events (no hyperfragment formation) grows, as g0 increases. The single hyperfrag-
ment formation probability first grows, following enhanced emission of one Λ, but it
saturates and decreases again when emission of two Λ becomes visible.

As the fluctuation strength g0 is increased, the probabilities after the statisti-
cal decay stage generally become closer to those after the dynamical stage. This
feature is understood as arising from the quantum statistical nature: In AMD-QL
with a sufficient fluctuation strength, a large fraction of dynamically produced light
fragments have excitation energies that are sufficiently small to ensure survival dur-
ing the statistical decay stage. This is because the lower energy components in the
wave packet are favored by quantum statistics, as realized in the calculation of the
intrinsic distortion of wave packets. Thus the difference between total production
rates of hypernuclei at the end of the AMD-QL simulation and after the subsequent
statistical decay becomes smaller, while the Cascade after-burner is still important
in describing the decay of heavier fragments, such as 13

ΛΛB, 12
ΛΛB, 12

ΛΛBe and 12
ΛB.

The combined results of AMD and AMD-QL with Cascade show that all of
these probabilities are in the allowed range between the lower and upper limits
experimentally estimated at 90% confidence level, shown in Table II, and the single
hyperfragment formation probability is in the roughly estimated range (26–73%).
These findings apply at any g0 value. In addition, with a larger fluctuation strength,
the double (twin) hyperfragment formation probability decreases (increases) and
becomes closer to the rough estimate 3–9% (6–18%).

In Fig. 6, we show the calculated double- and twin-hypernuclear formation prob-
abilities as functions of the fluctuation strength g0. At small values of g0, double
hypernuclei are found to be formed with a large probability of around 20%. When
we incorporate quantum fluctuations, this probability decreases to around 10% at g0

= 0.5 due to the enhanced emission of Λ in the dynamical stage. On the other hand,
the twin formation probability first becomes smaller at small g0 values and then
grows again for g0 > 0.3. Within the model calculation made here, this behavior
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Fig. 6. Double- and twin-hypernuclear formation probabilities as functions of the fluctuation

strength parameter g0. Dashed and solid lines represent the results before and after statis-

tical decays, respectively. The dotted curve in the left panel indicates the probability of forming

the double-hyperon compound nucleus (13ΛΛB
∗
), and the dotted curve in the right panel denotes

the probability of twin hyperfragment formation purely from the statistical decay of the excited

double hypernucleus. The experimental estimates are represented by thin solid lines.

is governed by the competition between two different formation mechanisms of twin
hypernuclei: the statistical formation from the double-hyperon compound nucleus
and dynamical fragmentation. At small g0 values, the former dominates twin events
and no dynamical formation of twin hypernuclei can be seen. The probability of
the latter grows as a linear or quadratic function of g0, and it becomes dominant at
large quantum fluctuations, although the twin hyperfragment formation probability
is still significantly smaller than the rough estimate.

Table IV. Dependence on the fluctuation strength g0 of the event type abundance (%) for double,

single, twin and no hyperfragment formation. Pure statistical decay results with Cascade and

the statistical multifragmentation model11) are also shown for comparison. In the results of the

statistical multifragmentation model, the sum of single and no hyperfragment formation rates

is denoted with superscript a.

Dynamical(%) +Cascade(%)

g0
13
ΛΛB

∗
Double Single Twin No Hyp. Double Single Twin No Hyp.

0.0 (AMD) 30.3 30.3 66.3 0.0 3.4 18.1 39.7 0.9 41.3

0.1 29.6 30.1 66.1 0.0 3.8 18.1 38.4 0.8 42.7

0.3 21.0 24.1 71.3 0.1 4.5 15.1 38.0 0.7 46.1

0.4 16.4 20.4 72.0 0.3 7.3 12.9 42.2 0.9 44.0

0.5 9.2 16.3 70.9 0.9 11.9 11.4 44.0 1.2 43.4

Cascade 100.0 100.0 — — — 58.3 24.8 3.3 13.7

Compound11) 100.0 100.0 — — — 66 20a 14 —a
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In Fig. 7 we display the density
evolution of a twin hyperfragment (8ΛLi
+ 5

ΛHe) formation event obtained with
the AMD-QL dynamical simulation. In
the initial state, a highly excited 13

ΛΛB∗

compound-like state is formed. Around
80 fm/c the compound system starts
to undergo fission, leading to the for-
mation of the hypernuclei 8

ΛLi and 5
ΛHe

at very small excitation. This twin
fragmentation occurs over a relatively
long time scale between direct and sta-
tistical decay processes. In addition
to twin hyperfragments, frequent light-
fragment emission (such as 4He, 3H and
7Li) appear in the dynamical stage of
AMD-QL. With quantum fluctuations

included we can obtain this variety of fragmentations during the dynamical stage,
before the statistical decay.

In this calculation, since a wave packet wave function is not an eigenstate of
the total angular momentum, we cannot describe the dynamics of quantum states
purely with Jπ = 1/2− or 3/2−, which will be created from Ξ−(2p) absorption on
12C. Therefore one may suspect that AMD-QL does not describe fragmentation pro-
cesses properly because of this angular momentum mixing. For example, in direct
reaction theories, the transition matrix elements depend strongly on the total angular
momentum. On the other hand, this kind of angular momentum dependence is not
very large in a statistical decay stage. In Table V, we show the dependence on the
total angular momentum J of event type rates (%) for double, single, twin, and no
hyperfragment formation from a double-hyperon compound nuclei (13

ΛΛB∗) calculated
with a pure statistical Cascade decay model. These results remain almost constant
even when the total angular momentum is varied from 1/2 to 7/2. This consideration
suggests that when multi-step processes are dominant and involve various complex
levels such as 3p2h states of 13

ΛΛB∗, constraints on the fragmentation pattern coming
from the total angular momentum become weak. In this case, the angular momen-
tum mixing in AMD and AMD-QL simulations does not cause serious problems.
Since the contributions of one-step processes in this reaction are not known well
experimentally at present, one can consider this present AMD(-QL)+Cascade calcu-
lation as complementary to the works based on direct reaction theories,13) where one
step processes with pure Jπ are treated but more complex processes are neglected.

4.4. Exclusive channels

Table VI lists the calculated rates for various channels with AMD and AMD-QL
(g0 = 0.5), both followed by Cascade. We also give the calculated production rates
obtained by applying direct reaction theory to the absorption from the 2p atomic
state of Ξ− with V0 = −16 MeV.13) Although the results given by direct reaction
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Table V. Dependence on the total angular momentum J of event type rates (%) for double, sin-

gle, twin, and no hyperfragment formation from a double-hyperon compound nuclei (13ΛΛB∗)
calculated with a pure statistical Cascade decay model.

J Double Single Twin No Hyp.

1/2 57.9 25.5 3.6 13.0

3/2 58.5 24.4 3.2 14.0

5/2 60.0 22.2 2.7 15.1

7/2 61.4 20.4 2.3 16.0

theory include the production rates to the particle unbound excited states, it is still
valuable to compare the trend.

As can be seen in Fig. 4, double hypernuclei are mainly produced at large masses
(A = 10, 11 and 12), because of their larger 2Λ binding energies. This feature partly
explains why it is difficult to detect double hypernuclei, since the non-mesic decay
rate is expected to be dominant in these heavier double hypernuclei. One exception
is 6

ΛΛHe (lampha), whose production rate reaches around 1.5%. While we can see
some visible differences between the results of AMD plus Cascade and AMD-QL
plus Cascade, for the reason given in the previous subsection, it is natural that
the channels with large Q values are strongly populated, since a large percentage
of these double hypernuclei are produced through the statistical decay of excited
double hypernuclei, 13

ΛΛB∗, 12
ΛΛB∗ and 12

ΛΛBe∗.
As for the single hypernuclei, those with mass number A = 11 dominate. Once

a Λ is emitted, the residual nucleus 12
ΛB, which has the largest probability in the

dynamical stage, will be excited less than 25 MeV, depending on the energy of
the emitted Λ. These excitation energies are comparable to the nucleon and Λ
separation energies, and therefore a single emission is sufficient to bring the residue
into the particle stable regime. The abundant single hypernuclei which are produced
from 12

ΛB, 11
ΛB, 11

ΛBe, 9
ΛBe, 8

ΛLi and 5
ΛHe, have their stable decay partners with small

separation energies from 12
ΛB, Sn = 12.6 MeV, Sp = 14.1 MeV (AMD calc.), St = 15.8

MeV, Sα = 13.2 MeV and S(5ΛHe) = 16.9 MeV, respectively. In AMD-QL, 10
ΛBe also

has a relatively large probability of 1.52%, which is produced through one-nucleon
emission from dynamically produced 11

ΛB and 11
ΛBe and deuteron emission from 12

ΛB.
The dominance of heavier single hypernuclei, which mainly decay in non-mesic ways,
explains again why we frequently see those events with a large energy release without
pion (8 events out of an average of 31.1).

In twin hypernuclear formation channels, the difference between AMD and
AMD-QL appears most clearly. While all the twin hypernuclear formation is de-
scribed by the statistical decay of 13

ΛΛB∗ in AMD, it is mainly described in the dy-
namical stage in AMD-QL with a sufficient fluctuation strength. In particular, in
the channels 8

ΛLi + 5
ΛHe, 25

ΛHe + t and 5
ΛHe + 4

ΛH + α, most of the dynamically
produced fragments are bound and therefore survive the statistical decay stage. An-
other visible channel in the dynamical stage is 9

ΛBe + 4
ΛH, which is the experimentally

observed channel. However, in the 9
ΛBe + 4

ΛH channel, dynamically produced 9
ΛBe

hyperfragments are usually in their particle-unstable states, which decay into 5
ΛHe +

α. One reason for this instability is an underestimate of the separation energy to the
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Table VI. Calculated production rates with AMD and AMD-QL (g0 = 0.5), followed by Cascade,

for double, single and twin hypernuclear formation. The results of direct reaction theory13) are

also shown for comparison. For the value of 5
ΛΛH + 2α in the direct reaction theory we display

the rate of the 5
ΛΛH + 8Be channel.

Channel AMD AMD-QL(g0 = 0.5) Direct13)

Dyn. (%) +Casc. (%) Dyn. (%) +Casc. (%)

Double Total 30.3 18.07 16.3 11.39
13
ΛΛB 30.3 — 9.2 —
12
ΛΛB+n — 2.00 2.4 0.61 3.96
12
ΛΛBe+p 0.03 0.96 2.1 0.34 2.43
11
ΛΛB+2n — 1.57 0.4 1.00
11
ΛΛBe+d — 0.26 0.3 0.09 0.59
11
ΛΛBe+pn — 5.27 1.0 2.88
10
ΛΛBe+t — 0.12 0.4 0.03 0.14
10
ΛΛBe+(dn, pnn) — 2.91 0.2 3.17

9
ΛΛBe+tn — — 0.1 0.10

9
ΛΛ Li+α — 0.16 0.2 0.05 0.05

8
ΛΛLi+αn — 0.51 — 0.19

8
ΛΛHe+αp — 0.36 — 0.24

7
ΛΛHe +(6Li,αd,αpn) — 0.79 — 0.49

6
ΛΛHe+7Li — 0.23 — 0.13 0.05

6
ΛΛHe+6Li+n — 0.60 — 0.37

6
ΛΛHe+α+(t, dn, pnn) — 1.85 0.1 1.39

5
ΛΛH+2α — 0.29 — 0.09 0.11a

Other — 0.19 0.23

Single Total 66.3 39.68 70.9 43.96
12

ΛB+Λ 66.3 1.42 53.0 3.24 2.07
11

ΛB+Λ+n — 17.79 7.8 20.90
11

ΛBe+Λ+p — 5.39 3.7 5.31
10

ΛB+Λ+2n — 0.01 — 0.01
10

ΛBe+Λ+(d, pn) — 0.79 0.5 1.52
9
ΛBe+Λ+t — 4.20 0.7 2.73
9
ΛBe+Λ+dn — 0.03 — 0.02
8
ΛLi+Λ+α — 3.67 2.9 4.96
7
ΛLi+Λ+αn — — 0.1 0.10
5
ΛHe+Λ+7Li — 6.26 1.1 3.99
5
ΛHe+Λ+αt — 0.03 0.7 0.72
4
ΛH+Λ+(2α,8Be) — 0.09 0.4 0.48

Twin Total 0.0 0.92 0.9 1.22
10

ΛBe+3
ΛH — 0.08 — 0.01

9
ΛBe+4

ΛH — 0.16 0.3 0.04 0.22
9
ΛBe+3

ΛH+n — 0.01 — 0.01
8
ΛLi+5

ΛHe — 0.06 0.3 0.33 0.21
7
ΛLi+6

ΛHe — 0.05 — 0.01
7
ΛLi+5

ΛHe+n — 0.08 — 0.07

25
ΛHe+t — 0.36 0.2 0.34

5
ΛHe+4

ΛH+α — 0.12 0.1 0.41
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5
ΛHe + α channel within the present effective interaction and AMD wave function.
Another reason might come from the extended density profile of 9

ΛBe. A fluctuation
matrix with the form of Eq. (3.12) is selected so as not to affect the intrinsic motion
of well-isolated compact fragments. However, 9

ΛBe has an extended ααΛ structure,
and so the intrinsic motion will be affected, especially when fragments are separating.

The total probability of twin hypernuclear formation shown here is 0.9 – 1.2%,
depending on the fluctuation strength. When we limit the initial system to the
double-hyperon compound nucleus 13

ΛΛB∗, the Cascade probability resulting in twin
hyperfragments is only around PTwin(13

ΛΛB∗) = 3%. On the other hand, this proba-
bility amounts to PTwin(13

ΛΛB∗) = 16%, within the hyperon compound nucleus pic-
ture,11) which exceeds the Cascade result by a factor of 5. We have found that
this probability is suppressed to be around PTwin(13

ΛΛB∗) = 10% and 7% within a
statistical multifragmentation model similar to that used in Ref. 11) when we take
account of excited levels of daughter fragments with mass number A ≥ 5 up to either
E∗ = Ethr + 2(A− 4) MeV or infinity, respectively. Therefore, it may be possible to
explain a factor of 2 by the difference in treatment of the excited fragment states at
the statistical decay stage. The remaining factor of 2 to 3 may be due to differences
in the decay scheme.

§5. Summary and discussion

We have investigated single, twin and double hypernuclear formation from Ξ−

absorption at rest on 12C by using antisymmetrized molecular dynamics14) aug-
mented by the quantal Langevin force15)–17) (AMD-QL) and followed by the multi-
step binary statistical decay model (Cascade).37)

The quantal Langevin treatment ensures that the dynamical evolution of the
system leads to quantum statistical equilibrium. Such dynamics can be described by
the time evolution of a distribution function that satisfies a Fokker-Planck equation,
and the equivalent time evolution of the complex wave-packet parameter {zi} is
governed by a Langevin-type equation of motion. This model has been shown to
work well in a statistical context; it describes the statistical equilibrium properties
of simple soluble models and finite nuclei well,15)–17) and it has been used to study
equilibrium properties of argon fluids.32) Furthermore, it has met with some success
in describing the fragment yields in Au + Au collisions at higher energies (100 – 400
MeV/A), where the number of particles is large and statistical equilibrium may be
realized.17) Therefore, the model may be expected to work well also in dynamical
contexts where pre- or non-equilibrium aspects are important.

In order to demonstrate the validity of the quantal Langevin model in a dy-
namical context, we first applied it to the damping of collective motion within a
simple soluble Lipkin model. It was shown that the damping process is described
well within the quantal Langevin model, including its dependence on the quasi-spin
degeneracy N . Although it is difficult to treat the interference between specific en-
ergy eigencomponents that agitate the collective motion again after several periods,
the early evolution coincides well with that of the exact solution.

We then, incorporated the quantal Langevin force into the antisymmetrized
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molecular dynamics (AMD). In the resulting model, referred to as AMD-QL, the
usual AMD equation of motion for {zi} is augmented by the inclusion of the quan-
tum fluctuations, leading to a Langevin-type equation. In order to achieve reliability
in practical applications, we have employed a phenomenologically parametrized ma-
trix g and determined the range of the overall fluctuation strength parameter, g0, by
analyzing the fragment mass distribution of the p + 12C reaction at 45 MeV, which
has an excitation similar to that of the reaction under consideration, Ξ− absorption
at rest on 12C. This analysis shows that although the fragment mass distribu-
tion of AMD-QL resembles that of AMD after statistical decays, it is significantly
different in the dynamical stage. In AMD, inelastic excitation of 12C, compound
nuclear formation, and one-nucleon emission exhaust almost all the events and no
fragmentation can be seen. On the other hand, in AMD-QL with a sufficiently large
fluctuation strength g0, various fragmentations occur dynamically, and the mass
spectrum in the dynamical stage is closer to the final post-Cascade results as g0 is
increased. Considering the lifetime of the compound nucleus 13N∗ and the signif-
icance of preequilibrium fragmentation (which is evident from the forward-peaked
angular distribution of the fragments, as is apparent from the data for the 27Al +p
reactions at 50 MeV,39) for example), it appears that this new framework is superior
to AMD, since the incorporation of the quantum fluctuations of the energy leads
to a significantly improved description of particle evaporation and fragmentation in
the dynamical process. AMD-QL can describe the fragmentation of the moderately
excited nuclei dynamically. This feature is expected to be especially important for
the Ξ− absorption reaction, because the total excitation energy in this reaction is
very small and a large part of stochastic two-body collisions are blocked. The quan-
tum fluctuations should then be the primary source in the system for generating the
fluctuations leading to the various channels in the final state.

We have employed AMD-QL for studying the dynamical mechanisms for Λ emis-
sion and twin hyperfragment formation in the Ξ− absorption reaction. While AMD
(plus Cascade) gives large production probabilities for double hypernuclei (18%) and
cannot describe twin hyperfragment formation in the dynamical stage, AMD-QL
(plus Cascade) suppresses the formation of double hypernuclei (∼10%) and provide
a qualitative description of twin hyperfragment formation in the dynamical stage
(∼0.9% in dynamical stage, and around 1.2% after Cascade). The calculated proba-
bilities of double, single and twin hyperfragment formation are in the region allowed
by the experimental estimate at, 90% confidence level shown in Table II. Moreover,
the calculated single hyperfragment formation probability is within rough estimate
26–73%. In addition, the double hyperfragment formation probability becomes very
close to the rough estimate 3–9% when the fluctuation strength is sufficiently large.
This is mainly due to the enhanced Λ emissions. In AMD, even when a Λ has
sufficient energy to escape the compound nucleus, it easily loses its energy through
two-body collisions before escaping. Therefore, in AMD a Λ can only escape from the
nucleus when it is created on the nuclear surface and its initial momentum is directed
outwards. By contrast, in AMD-QL the quantum fluctuations continuously kick all
the particles and a Λ can then be emitted even if it is initially bound. Through
these analyses, we conclude that enhanced Λ emission in the preequilibrium stage
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is essential in describing the bulk dynamics of Ξ− absorption at rest and that the
quantum fluctuations given by the form of Eq. (3.12) describes this enhancement
well with the overall quantum fluctuation strength parameter g0 being around 0.5.

Although the calculated twin hyperfragment formation probabilities are larger
than the experimental lower limit (0.66%), they are still much below the rough
estimate, 6–18%. Furthermore, both of the two twin hypernuclear formation events
are in the channel 9

ΛBe + 4
ΛH, and it is known that these twin hypernucleus are

formed after Ξ− is absorbed into 12C.8),9) Therefore the probability for finding the
twin hyperfragments 9

ΛBe+4
ΛH would reach around 13% (= 2 events/ (31.1 events (C,

N, O)× 0.48 (C))) when the Ξ− is absorbed into 12C. The calculated probabilities for
this channel are only 0.16% and 0.04%, with AMD and AMD-QL (g0 = 0.5), followed
by Cascade, respectively. Even if we sum up the probabilities in the channels 5

ΛHe +
4
ΛH + α (0.12% and 0.41%) and 4

ΛH + Λ+ (2α,8Be) (0.09% and 0.48%) to compensate
for the underestimate of the separation energy in 9

ΛBe, the total probabilities, 0.37%
and 0.93%, are still smaller than the above stated rough estimate by an order of
magnitude.

This underestimate of twin hyperfragment formation is not a specific problem
in transport models, and it was pointed out in previous works. As pointed out
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by Yamamoto, Sano and Wakai,11) the statistical multifragmentation decay model
of the double-hyperon compound nucleus also fails to account for the experimental
fact that the twin hyperfragment formation is more frequent than that of double
hyperfragment formation, assuming that the Λ-Λ interaction is attractive. Yamada
and Ikeda13) also showed that the channels of twin hypernuclei gave very small
spectroscopic factors, and the calculated formation probability of twin hypernuclei
was very small.

Fig. 8 summarizes the results of various model analyses. Since the emission
probability of one Λ at the preequilibrium stage is not taken into account in Ref. 11),
we assume that the calculated values give the upper limit of the model. On the other
hand, the probabilities given in Ref. 13) for double, twin and S = −2 in the direct
reaction picture are considered to be lower limits, since the dissipation of the doorway
state into compound states and formation from these compound states are neglected.
We can see immediately that all the analyses underestimate the twin hyperfragment
formation probability relative to that for double hyperfragment formation.

Therefore, if the twin hypernuclear formation probability, especially in the chan-
nel 9

ΛBe + 4
ΛH, is very high, as suggested, there must be some production mechanism

which is missed in all the theoretical works, including this work. Another possibility
is that the twin hypernuclear formation probability is very close to or below the lower
limit at 90% confidence level estimated by using the number of observed events. In
order to distinguish these two possibilities, experiments with higher statistics are
required. In addition to such higher statistics, one of the key challenges is to more
precisely determine the upper limit in each type of event. This requires resolving
the unspecified events, such as those events of type (C) in Table I.

We have noted the shortcomings of the standard microscopic AMD model with
which it is difficult to describe production of fragments near their ground states in
low-energy preequilibrium dynamical processes, such as twin hypernuclear formation.
As the inclusion of quantum fluctuations leads to a significant improvement, the
extended model may yield a better description of other fission processes as well.

It is obviously important to broaden the confrontation of the theory with exper-
iment through application to other reactions for which suitable data are available.
Moreover, it should be kept in mind that there are still ambiguities in AMD-QL.
The key quantity concerning fluctuations, the matrix g, is determined phenomeno-
logically. Therefore, in the future, it would be of interest to determine g from more
fundamental considerations. In this context, it is worth exploring the incorporation
of the effects of two-particle correlations and their propagation41) in a statistical man-
ner. Another possible direction is to incorporate the memory effects in the two-body
collision term42) and to seek for their Markovian image in the form of fluctuations.
In both of the theories cited above,41),42) it is shown that the damping of collective
motion is described well by well-founded quantum models. Therefore, it is desirable
to incorporate these features into the molecular dynamics with the quantal Langevin
force. We hope that undertaking these challenges will help to deepen our microscopic
understanding of fluctuation and dissipation phenomena in nuclear dynamics.
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