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A chiral symmetric relativistic mean field model
with logarithmic sigma potential∗)

Kohsuke Tsubakihara and Akira Ohnishi

Department of Physics, Faculty of Science, Hokkaido University,
Sapporo 060-0810, Japan

We develop a chiral symmetric relativistic mean field model with logarithmic sigma
potential derived in the strong coupling limit of the lattice QCD. We find that both of
nuclear matter and finite nuclei are well described in the present model. The normal vacuum
is found to have global stability at zero and finite baryon densities, and an equation of state
with moderate stiffness (K ' 280 MeV) is obtained. Binding energies and charge radii of
Z closed even-even nuclei are well reproduced in a wide mass range from C to Pb isotopes,
except for the underestimates of binding energies in several jj closed nuclei.

§1. Introduction

Chiral symmetry is a fundamental symmetry of QCD at zero quark masses,
and its spontaneous symmetry breaking generates constituent quark and hadron
masses. The Nambu-Goldstone boson of chiral symmetry, i.e. pion, mediates the
long range part of nuclear force,1) and the midrange attractive nuclear force can
be described with a light scalar isoscalar meson, so called σ, which would be the
chiral partner of the pion and represent the fluctuation of the chiral condensate.
Thus it is desirable to respect chiral symmetry in theories of quark, hadron, and
nuclear physics. Actually, many models and theories of quarks and hadrons such as
the sigma model,2) the Nambu-Jona-Lasino model,3),4) and the chiral perturbation
theories5) have been constructed on the basis of chiral symmetry.

In nuclear many-body problems, relativistic mean field (RMF) models have been
developed to describe properties of nuclear matter and finite nuclei. The first RMF
model proposed by Serot and Walecka6) includes sigma and omega (isoscalar vec-
tor) mesons and their linear couplings to nucleons. Later on, non-linear self-coupling
terms of sigma7)–10) and omega mesons10), 11) are introduced to obtain better descrip-
tions of nuclear matter and finite nuclei. These Lagrangians contain σ2, σ3, σ4 terms,
which remind us of the chiral linear σ model Lagrangian. RMF models have been
successfully applied to various nuclear many-body problems; nuclear matter satu-
ration,6) single particle levels in finite nuclei including the spin-orbit splittings,6)

nuclear binding energies,8)–10) nucleon-nucleus scatterings,12) and compact astro-
physical objects such as neutron stars and supernovae.13)–15) Having these successes
and the Lagrangian forms in mind, it is natural to expect that RMF is not only a
phenomenological model parameterizing nuclear energy functionals, but also a start-
ing point of finite baryon density hadronic models provided that chiral symmetry is
respected.

∗) Prog. Theor. Phys. (2007), in press [arXiv: nucl-th/0607046].
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Contrary to the expectations above, simple chiral RMF models fail to describe
nuclei as nucleon many-body systems. Since the valence nucleon Fermi integral
prefers smaller chiral condensate, the normal vacuum jumps to a chiral restored
abnormal one (so-called chiral collapse16)) below the normal nuclear density in a
mean field treatment of the linear σ model.17)–19) In order to solve this problem,
several prescriptions have been proposed to generate additional repulsive potential at
small σ values, where σ ∝ −〈q̄q〉. One of the prescriptions is to include fermion loop
effects.19)–21) In the baryon one-loop renormalization, non-linear and non-analytic
sigma potential terms appear and stabilize the normal vacuum.19), 20) Similar terms
are obtained from quark loops,4) and it is possible to suppress the chiral collapse
and to reproduce the saturation point by tuning the coefficients of these terms.21) In
both of the cases, instability at large σ values is caused by the generated interaction
term, −σ4 log σ2. In addition, meson loops generally cancel a large part of additional
repulsion from fermion loops,22), 23) then the chiral collapse problem remains. The
second approach is to introduce the coupling of sigma and omega mesons.18),24)

The partial chiral symmetry restoration reduces omega meson mass and enhances
the repulsive vector interaction, then the normal vacuum is kept stable even at high
densities. Quantitatively, however, repulsive vector interaction becomes so large that
the nuclear matter is found to be very stiff.18), 24) It is possible to soften the EOS by
including higher order terms such as σ6 and σ8, but these terms cause instability at
large σ values.25)

The third way to overcome the chiral collapse problem is to incorporate the
glueball field which simulates the scale anomaly in QCD .26)–31) While it may not be
justified to include the unobserved glueballs in hadronic models, these models give
nuclear matter incompressibility in an acceptable range, and they roughly explain
the bulk properties of nuclei.27) From the symmetry requirement, the glueball is
conjectured to couple with σ in the form of −χ4 log σ2, where χ denotes the glueball
field. This potential term ensures the stability of the normal vacuum in the mean
field approximation. The mass of the glueball is assumed to be heavy, 1 − 2 GeV,
then it would be reasonable to consider the glueball expectation value as constant
in low energy phenomena.27) Under this assumption, the above potential term is
divergent at σ → 0 and keeps the normal vacuum stable.

These approaches are based on QCD inspired effective models, and it is prefer-
able to obtain the chiral potential (energy density as a function of σ) directly from
QCD. At present, it is not yet possible to obtain the chiral potential in Monte-Carlo
simulations of the lattice QCD, since the quark loop contribution is very strong in the
chiral (massless) limit. One of the promising directions would be to invoke the strong
coupling limit of the lattice QCD (SCL-LQCD). Actually, a logarithmic σ potential
term similar to that in the glueball model was already derived.32) In SCL-LQCD,
the pure gluonic action disappears and we can perform the one-link integral,32)–37)

then we can obtain an analytic expression of the chiral potential with a logarithmic
term, − log σ2.32),33)

In this paper, we study nuclear matter and finite nuclei in a flavor SU(2) chiral
symmetric relativistic mean field model containing the logarithmic chiral potential
term, − log σ2, derived from SCL-LQCD32), 33) in vacuum. We also include vec-
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tor mesons (ω, ρ), their linear couplings to nucleons, and ω self-interaction term,
(ωµωµ)2, in the effective Lagrangian phenomenologically. Requiring that the pion
and nucleon masses and the pion decay constant are given, we have four free pa-
rameters, mσ, gω, gρ and cω (σ mass, coupling constants of nucleons with ω and
ρ mesons, and the coefficient of the (ωµωµ)2 term). Two of these parameters (gω

and cω) are determined to fit the nuclear matter saturation point, (ρ0, E/A) =
(0.145 fm−3,−16.3 MeV), and the others (mσ and gρ) are determined to reproduce
the binding energies of Sn and Pb isotopes. By choosing these parameters appro-
priately, we find that the obtained EOS is as soft as those in other successful RMF
models such as NL3 and TM1 models.9),10) Bulk properties (binding energies and
charge radii) of proton (sub-)closed even-even nuclei are also well explained in a
comparable precision to NL1,8) NL3,9) and TM10) models.

We consider a linear Nσ coupling in this paper, where the nucleon mass is a
linear function of σ. When the quark structure of nucleons are considered, we may
have non-linear Nσ couplings.38)–40) Based on the MIT bag model38) or the NJL
model,39) it is demonstrated that the nucleon mass can have a curvature as a function
of σ, known as the scalar polarizability. This positive curvature leads to a repulsion
between the nucleons, which prevents the chiral collapse.38), 39) The non-linear Nσ
coupling and the chiral potential have to be considered simultaneously. We discuss
this point in Sec. 4.

There are several works including the negative parity baryons21),41) and works
based on another chiral partner assignment of pions.42) While these are promising
approaches, we stick to a naive assignment of nucleon and pion chiral partners in
this work. Finite temperature and finite chemical potential treatments in SCL-
LQCD33)–37) would be also necessary to describe the chiral phase transition at high
temperatures and densities, but these are beyond the scope of this paper.

This paper is organized as follows. In Sec. 2, we briefly explain the derivation of
the chiral potential in SCL-LQCD, and describe our effective hadronic Lagrangian.
In Sec. 3, we discuss the properties of nuclear matter and finite nuclear properties in
the present model in comparison with other models. In Sec. 4, we examine the nat-
uralness of the obtained effective Lagrangian through the naive dimensional analysis
(NDA),29), 40), 43) and we also interpret the present Lagrangian in terms of the scalar
polarizability.38) We summarize our work in Sec. 5.

§2. Chiral symmetric sigma potential

2.1. Logarithmic chiral potential in the strong coupling limit of the lattice QCD

Chiral potential Vσ (energy density as a function of σ in vacuum) is one of
the most important ingredients in chiral models. In this paper, we utilize the chiral
potential derived in the strong coupling limit of the lattice QCD (SCL-LQCD).32)–34)

Here we briefly summarize how to derive the chiral potential. Detailed derivations
are found in Refs. 32)–34).

In SCL (gQCD → ∞), we can ignore the pure gluonic part of the lattice action
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which is proportional to 1/g2
QCD, and we keep only those terms including fermions,

SF [χ, χ̄, U ] =
1
2

∑
x,µ

ηµ(x)
[
χ̄(x)Uµ(x)χ(x + µ̂) − χ̄(x + µ̂)U †

µ(x)χ(x)
]

, (2.1)

where ηµ(x) = (−1)x0+x1+···+xµ−1 , and we express the action in the lattice unit. We
consider two species of staggered fermions simulating u and d quarks. After integrat-
ing out the link variable Uµ in the leading order of 1/d expansion and introducing
the auxiliary fields σαβ , we obtain the following partition function,

Z =
∫

D[χ, χ̄, U ] exp (−SF [χ, χ̄, U ])

'
∫

D[χ, χ̄] exp

1
2

∑
x,y,α,β

Mαβ(x)VM (x, y)M(y)βα


=

∫
D[χ, χ̄, σ] exp (−Sσ[χ, χ̄, σ]) , (2.2)

Sσ[χ, χ̄, σ] =
∑

x,y,α,β

[
1
2
σ(x)αβVM (x, y)σ(y)βα + σ(x)αβVM (x, y)M(y)βα

]
. (2.3)

Mesonic composites are defined as Mαβ(x) = χ̄a
α(x)χa

β(x), where a denotes color,
and α and β show the flavor. The lattice mesonic inverse propagator VM (x, y) is
given as VM (x, y) =

∑
µ (δy,x+µ̂ + δy,x−µ̂) /4Nc. From the first to the second line in

Eq. (2.2), we have used the one-link integral formula,
∫

dUUabU
†
cd = δadδbc/Nc. The

auxiliary fields are related to the expectation values of the mesonic composites as
〈σαβ(x)〉 = −〈Mαβ(x)〉.

Now we consider static and uniform scalar σ and pseudoscalar π condensates,
and we substitute the auxiliary fields by the mean field ansatz, σαβ(x) = s (σ +
iε(x)τ ·π)αβ/

√
2, where ε(x) = (−1)x0+x1+x2+x3 and s is a scaling factor to connect

the chiral condensate and physical σ and π fields. Since fermions are decoupled
in each space-time point, we can easily perform the fermion integral. The chiral
potential is obtained in the lattice unit as,

Vχ(σ,π) =
1
2
〈σαβVMσβα〉 − Nc log det [σαβVM ]

=
s2

2
〈VM 〉tr

[
M †M

]
− Nc log det M

=
1
2

bσφ2 − aσ log φ2 , (2.4)

φ2 = σ2 + π2 , aσ =
Nc

a4
lattice

, bσ =
d + 1
2Nc

s2 a2
lattice , (2.5)

where 〈· · ·〉 denotes the space-time average, and d = 3 is the spatial dimension. The
meson matrix M is given as M = (σ + iτ · π)/

√
2. In Eq. (2.5), we explicitly write

the lattice spacing alattice.
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With an explicit symmetry breaking term, we require that physical masses of σ
and π mesons are obtained in the mean field approximation.

V SCL
σ = Vχ(σ,π) − cσ σ =

1
2

bσφ2 − aσ log φ2 − cσ σ (2.6)

=
1
2

m2
σϕ2 +

1
2

m2
ππ2 + O((ϕ,π)3) (ϕ = fπ − σ) . (2.7)

After fitting the vacuum equilibrium value σ = fπ and the pion mass mπ, param-
eters aσ, bσ, cσ are represented with one parameter mσ, which is treated as a free
parameter,

aσ =
f2

π

4
(m2

σ − m2
π) , bσ =

1
2

(m2
σ + m2

π) , cσ = fπm2
π . (2.8)

In a present context, one can think that this procedure is equivalent to tune
the lattice spacing and the scaling factor in Eq. (2.5). However, the coefficients
aσ and bσ in Eq. (2.5) depend on the details of the derivation. For example, it
has been shown that the baryonic composite contribution modifies the coefficient
bσ.33) Furthermore, two species of staggered fermions correspond to Nf = 8, and
the coefficient modification may not be trivial when we take Nf = 2. Thus we regard
them as parameters to obtain physical masses of σ and π mesons in the mean field
approximation.

Because of the singularity of Vσ at σ → 0, chiral symmetry restoration is sup-
pressed with this chiral potential. One can doubt that this singularity may come
from an artifact of SCL-LQCD. Indeed, in a finite temperature treatment of SCL-
LQCD, we do not have a divergent behavior at σ → 0,33)–36) but we still have a finite
negative derivative at σ → 0 in cold matter (T = 0). This finite negative derivative
at σ = 0 is enough to suppress the full chiral restoration at finite density, because
the nucleon Fermi integral contribution behaves as ρBσ2 and we always have a min-
imum at a finite σ value. Therefore, we consider that the present chiral potential
Vσ would be a good starting point to describe cold nuclear matter and nuclei. At
finite temperatures, the singularity disappears also in the derivative, and the full
chiral restoration will take place in SCL-LQCD.33)–36) In that case, we have to take
account of the finite temperature effects in Vσ.

2.2. Comparison with other models

There is a variety of chiral potentials proposed so far. The simplest one is found
in the chiral linear σ model (φ4 theory) proposed by Gell-Mann and Levy,2)

V (φ4)
σ =

λ

4
(φ2 − f2

π)2 +
1
2
m2

πφ2 − fπm2
πσ , λ =

m2
σ − m2

π

2f2
π

, (2.9)

where we have only one free parameter mσ and the theory is renormalizable. In the
Nambu-Jona-Lasino(NJL) model,3),4) the chiral symmetric four quark interaction
dynamically breaks chiral symmetry and generates the chiral potential having a
wine bottle structure. The chiral potential in NJL is found to be

V NJL
σ =

m2
0

2
σ2 + Λ4fNJL

(
Gσ

Λ

)
− fπm2

πσ , (2.10)
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Fig. 1. Energy density in vacuum as a function of σ in the SCL model (solid curve) is compared

with those in the linear σ (φ4, dotted curve), NJL3),4) (open squares), baryon loop (BL, dashed

lines)20), Sahu-Ohnishi (SO, dot-dashed lines)25), and TM1 (filled circles)10) models.

fNJL(x) = −
NcNf

4π2

[(
1 +

x2

2

) √
1 + x2 − 1 − x4

2
log

(
1 +

√
1 + x2

x

)]
, (2.11)

where G represents the coupling of the quark to σ and π mesons.4) In Ref. 4),
parameter values are fixed to fit fπ and mπ, resulting in the constituent quark mass
Mq = Gfπ = 335 MeV and cut off Λ = 631 MeV.

Nucleon one-loop renormalization in the chiral linear σ model leads to additional
potential terms in vacuum. In the chiral limit (mπ = 0), the following interaction
appears,20)

V BL
σ =

m2
σ

8f2
π

(φ2 − f2
π)2 − M4

NfBL(φ/fπ) , (2.12)

fBL(x) = − 1
4π2

[
x4

2
log x2 − 1

4
+ x2 − 3

4
x4

]
. (2.13)

In Ref. 20), the value of sigma mass is taken to be mσ = 572.8 MeV.
In order to obtain reasonable incompressibility within the Boguta scenario,18) it

is proposed to add higher order terms,25) and their chiral potential is given in the
chiral limit as follows,

V SO
σ =

m2
σ

8f2
π

(φ2 − f2
π)2 + f4

πfSO(φ/fπ) , (2.14)

fSO(x) =
C6

6
(x2 − 1)3 +

C8

8
(x2 − 1)4 , (2.15)

with parameters mσ = 762.3 MeV, C6 = −74.4 and C8 = −2.2.
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For comparison, we also refer here the potential in a non-chiral model, TM1.10)

V TM1
σ (ϕ) =

m2
σ

2
ϕ2 +

g3fπ

3
ϕ3 +

g4

4
ϕ4 , (2.16)

where ϕ stands for the deviation from the vacuum, ϕ = fπ − σ. Parameters in the
TM1 model are given as mσ = 511.198 MeV, g3 = 15.3383 and g4 = 0.6183.

In Fig. 1, we compare the chiral potential in the present SCL model, V SCL
σ

in Eq. (2.6), with those in other models. The chiral potential in the NJL model
agrees with that in the linear σ model (φ4) in the region σ < fπ. As mentioned in
the introduction, the nucleon Fermi contribution prefers smaller σ values at finite
density, and in order to keep σ from collapsing at finite densities, we need more
repulsive potential at small σ values. While the repulsion is enough to prevent this
collapse in the baryon loop (BL) and Sahu-Ohnishi (SO) models, these models have
instability at large σ. In the present SCL model, there is no instability, and strong
repulsion at small σ suppresses the chiral collapse. It is interesting to find that the
SCL model result is very close to that in the TM1 except for the divergent behavior
at σ → 0.

§3. Nuclear matter and finite nuclei in chiral RMF models

RMF approach has been developed as an effective theory to describe nuclear
matter and finite nuclei in a field theoretical treatment. In this paper, we consider
the following chiral symmetric RMF Lagrangian in which nucleons couple with σ,
π, ω and ρ fields,

Lχ = ψN

[
i/∂ − gσ(σ + iγ5τ · π) − gω /ω − gρτ · /ρ

]
ψN

+
1
2

(∂µσ∂µσ + ∂µπ · ∂µπ) − Vσ(σ,π)

− 1
4
WµνWµν +

1
2
m2

ωωµωµ +
cω

4
(ωµωµ)2 − 1

4
Rµν · Rµν +

1
2
m2

ρρ
µ · ρµ ,

(3.1)
Wµν = ∂µων − ∂νωµ , (3.2)
Rµν = ∂µρν − ∂νρµ + gρρµ × ρν . (3.3)

Here we have omitted the photon field and we include that for finite nuclear studies.
In this section, we study uniform nuclear matter and finite nuclei with the La-

grangian in Eq. (3.1) by using the logarithmic chiral potential V SCL
σ in Eq. (2.6). We

search for an appropriate parameter set, containing the σ mass (mσ), meson-nucleon
coupling constants (gω and gρ), and the strength of the ω self-interaction (cω), which
explains the properties of symmetric nuclear matter and finite nuclei.

3.1. Nuclear Matter

First, we study the EOS of uniform symmetric nuclear matter. We assume that
the meson fields are static and uniform, then the RMF Lagrangian for nuclear matter
becomes

LUnif
χ = ψN

(
i/∂ − gσσ − γ0(gωω + gρτ3R)

)
ψN
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Fig. 2. Symmetric nuclear matter incompressibility K as a function of σ mass (mσ) in the SCL

model. For a given mσ value, the ω-nucleon coupling constant (gω) and the ω self-interaction

strength (cω) are determined to fit the symmetric nuclear matter saturation point, (ρ0, E/A),

and the incompressibility K is obtained as a result of fitting.

+
1
2
m2

ωω2 +
cω

4
ω4 +

1
2
m2

ρR
2 − Vσ(σ) , (3.4)

which includes σ, ω and ρ (written as R) mesons. Here we have omitted the Lorentz
and isospin indices, ω = ω0 and R = ρ30, for simplicity.

The energy density in symmetric nuclear matter can be written as,

E/V = gN

∫ pF dp

(2π)3

√
p2 + M∗

N
2(σ) + gωωρB − m2

ω

2
ω2 − cω

4
ω4 + Vσ(σ) , (3.5)

where gN = 4 is the nuclear spin-isospin degeneracy, and M∗
N (σ) = gσσ is the nucleon

effective mass. The equilibrium conditions read

∂(E/V )
∂σ

= gσρS +
∂Vσ

∂σ
= 0 , ρS = gN

∫ pF dp

(2π)3
M∗

N (σ)√
p2 + M∗

N
2(σ)

, (3.6)

∂(E/V )
∂ω

= gωρB − m2
ωω − cωω3 = 0 . (3.7)

In symmetric nuclear matter, we have three relevant parameters, mσ, gω and
cω. When we give mσ as a free parameter, then other two are determined to fit
the saturation properties, (ρ0, E/A) = (0.145 fm−3,−16.3 MeV). In Fig. 2, we
show the nuclear matter incompressibility K = 9ρ2

0(∂
2(E/V )/∂ρ2

B) as a function of
mσ. We find that the incompressibility is smaller than 300 MeV in the mass region
460 MeV . mσ . 540 MeV, which can be regarded as the allowed region. Especially,
at around the incompressibility minimum (K ' 279 MeV at mσ ∼ 500 MeV), we
obtain EOS as soft as that in TM1.10)
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Fig. 3. Energy density at finite baryon densities. Calculated energy densities in vacuum (thick

solid curves) and ρB = (1− 5)ρ0 (thin solid curves, from down to up as the density grows) as a

function of σ are compared in chiral RMF models; the linear σ model (φ4, top left panel), the

Boguta model (Bog., top right panel)18),24), the baryon loop model (BL, middle left panel)20),

and the SCL model (middle right panel). The nucleon Fermi integral contribution (bottom left

panel) and the results in the TM1 model (bottom right panel)10) are also shown. The dotted

curves show the equilibrium point where the energy density becomes the (local) minimum in

the range of σ < fπ.

In Fig. 3, we compare the energy density as a function of σ at ρB = (0 − 5)ρ0

in several RMF models. In the φ4 model (left top panel), the nucleon Fermi integral
contribution (left bottom panel in Fig. 3) is stronger than the repulsive potential at
σ < fπ, and the vacuum collapses to the abnormal one at a density below ρ0.17)–19), 24)

In order to avoid the chiral collapse, Boguta18) replaced the vector meson mass term
m2

ωω2/2 with that of the σ2ω2 coupling term,

LBoguta
σω =

1
2

m2
ω

f2
π

σ2ω2 . (3.8)

In the case of no ω self-interactions, cω = 0, the above coupling term gives large ω
values at small σ as, ω = f2

πgωρB/m2
ωσ2, leading to a strongly repulsive potential

at finite densities. Because of this repulsion, nuclear matter EOS becomes stiff
(K > 600 MeV), and σ increases again at around ρB ' 0.27 fm−3, as shown in the
top right panel of Fig. 3.

In the left panel of Fig. 4, we compare the EOS in the present model with those
in other RMF models. We adopt mσ = 502.63 MeV, which fits bulk properties
of finite nuclei and gives K = 279.14 MeV. Other parameters are summarized in
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Fig. 4. Equation of state of symmetric nuclear matter (left panel) and density dependence of meson

fields (right panel). We compare the calculated results in SCL (solid curves) with those in the

Boguta (Bog., dotted curve)18),24), baryon loop (BL, dashed lines)20), Sahu-Ohnishi (SO, dot-

dashed lines)25), and TM1 (filled circles)10) models.

Table I. We find that the present model (SCL) gives softer EOS than that in the
Boguta model (Bog.),18),24) and its incompressibility is comparable to those in Sahu-
Ohnishi (SO)25) and TM110) models. The baryon loop (BL) model20) gives the softest
EOS in the models under consideration. However, it has instability at large σ values,
and the incompressibility may be too small, K ' 110 MeV.

In addition to the similarity in EOS, σ and ω expectation values in the SCL
model behave in a similar way to those in TM1 at low densities. In the right panel
of Fig. 4, we show σ and ω expectation values as a function of ρB. We find that the
σ expectation value decreases to around σ ' 60 MeV at ρB ' ρ0 in the SCL and
TM1 models, while the decrease is smaller in the BL and Boguta models.

The modifications of σ and ω from the vacuum values determine the nucleon
scalar and vector(-isoscalar) potentials, Us(ρB) = −gσ(fπ − σ) and Uv(ρB) = gωω.
TM models have been modeled to explain the bulk properties of nuclei such as the
binding energies and nuclear radii, and these are mainly determined by the nuclear
matter saturation properties and meson expectation values at around ρ0. Thus the
above similarity of EOS and meson fields suggests that the SCL model could describe
finite nuclei as the TM model.

3.2. Finite Nuclei

In describing finite nuclei, it is numerically preferable to use the shifted field,
ϕ ≡ fπ − σ, since the boundary condition is given by ϕ → 0(r → ∞). We separate
the σ mass term from the chiral potential Vσ as,

Vσ =
1
2
mσϕ2 + Vϕ(ϕ) , Vϕ(ϕ) = −2aσfSCL

(
ϕ

fπ

)
, (3.9)

fSCL(x) = log (1 − x) + x +
x2

2
. (3.10)
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It is also necessary to include the photon field which represents the Coulomb po-
tential. Here we take the static and mean-field approximation for boson fields, then
RMF Lagrangian can be written as follows,

LRMF
χ = ψN

[
i/∂ − M∗

N (ϕ) − γ0Uv(ω,R,A)
]
ψN − 1

2
(∇ϕ)2 − 1

2
m2

σϕ2 − Vϕ(ϕ)

+
1
2

(∇ω)2 +
1
2
m2

ωω2 +
cω

4
ω4 +

1
2

(∇R)2 +
1
2
m2

ρR
2 +

1
2

(∇A)2 , (3.11)

M∗
N (ϕ) = MN − gσϕ , Uv(ω,R,A) = gωω + gρτ3R + e

1 + τ3

2
A . (3.12)

The field equations of motion derived from this Lagrangian read,

[−iα · ∇ + βM∗ + Uv] ψN = εiψN , (3.13)(
−4 + m2

σ

)
ϕ = gσρS − dVϕ

dϕ
, (3.14)(

−4 + m2
ω

)
ω = gωρB − cωω3 , (3.15)(

−4 + m2
ρ

)
R = gρρτ , (3.16)

−4A = eρp
B , (3.17)

where ρS = ρp
S + ρn

S , ρB = ρp
B + ρn

B, ρτ = ρp
B − ρn

B denote scalar, baryon and isospin
densities of nucleons, respectively. We solve the self-consistent coupled equations
(3.13)-(3.17) by iteration until the convergence of total energy is achieved. In this
work, we assume that nuclei are spherical, then the nucleon wave functions are
expanded in spherical harmonic basis as follows,

ψαiκm =
(

i[Gα
iκ/r]Φκm

−[Fα
iκ/r]Φ−κm

)
ζα , (3.18)

ρα
B =

∑
i

(
nocc

iκα

4πr2

) (
|Gα

iκ(r)|2 + |Fα
iκ(r)|2

)
, (3.19)

ρα
S =

∑
i

(
nocc

iκα

4πr2

)(
|Gα

iκ(r)|2 − |Fα
iκ(r)|2

)
, (3.20)

where ζα represents the isospin wave function (proton or neutron), nocc
iκα denotes

the number of nucleons in that single particle level, and κ = l and −(l + 1) for
j = l − 1/2 and j = l + 1/2, respectively. Total energy is given by the integral of the
energy density given as,

E =
∑
i,κ,α

nocc
iκα εiκα − 1

2

∫ {
−gσϕρS + gωωρB + gρRρτ + e2Aρp

B

}
dr

+
∫ (

Vϕ − 1
2
ϕ

dVϕ

dϕ
+

cω

4
ω4

)
dr . (3.21)

We use Eqs. (3.13)-(3.17) to calculate second order derivatives of meson fields.
In comparing the calculated mean-field results with data, we have to take account

of several corrections. In this work, we consider the center-of-mass (CM) correction
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Parameters

mσ (MeV) gω gρ cω

502.63 13.02 4.40 200

Constants

MN (MeV) fπ (MeV) mπ (MeV) mω (MeV) mρ (MeV) gσ = MN/fπ

938 93 138 783 770 10.08

~c (MeV·fm) ρ0 (fm−3) E/A(ρ0) (MeV) ~ω (MeV) 〈r2
ch〉p 〈r2

ch〉n

197.32705 0.145 −16.3 41 A−1/3 (0.862 fm)2 −(0.336 fm)2

Table I. Parameters and constants adopted in the present work. Two of the parameters (gω and

cω) are determined to fit the saturation point of symmetric nuclear matter and others (mσ and

gρ) are fixed through global fitting of Sn and Pb isotope binding energies.

and nucleon finite size correction in the same way as that adopted in Ref. 10). The
CM kinetic energy is assumed to be

EZPE =
〈P 2

CM〉
2AMN

' 3
4

~ω , (3.22)

where P CM =
∑

i pi is the CM momentum. This correction gives an exact result for
harmonic-oscillator wave functions and we assume that it also applies to RMF wave
functions. The CM correction on the proton rms radius is written as

δ〈r2
p〉 = −2〈RCM · Rp〉 + 〈R2

CM〉

'


− 3~

2AMNω
(for heavy nuclei) ,

−2Z

A
〈R2

p〉 + 〈R2
CM〉 = −

2〈r2
p〉

A
+

〈r2
M〉
A

(for light nuclei) ,
(3.23)

where Rp =
∑

i∈p ri/Z is the proton CM position, and 〈r2
p〉 and 〈r2

M〉 represent the
proton and matter mean square radii, respectively. We assume again that harmonic-
oscillator results applies for heavy nuclei. For light nuclei, we evaluate the correction
in RMF wave functions, and we consider only the direct-term contributions. The
charge rms radius is obtained by including the finite size effects of protons and
neutrons,

〈r2
ch〉 = 〈r2

p〉 + 〈r2
ch〉p +

N

Z
〈r2

ch〉n , (3.24)

We evaluate the binding energies and charge rms radii with these corrections, and
the pairing energy for open-shell nuclei are neglected.

In describing finite nuclear properties, we have two free parameters, mσ and gρ,
which we cannot fix in nuclear matter. We have fitted the binding energies of Sn
(Z = 50) and Pb (Z = 82) isotopes and have fixed the parameter values as gρ = 4.40
and mσ = 502.63 MeV. Other parameters are obtained to fit the symmetric nuclear
matter saturation point, and summarized in Table I. By using this parameter set,
we have calculated the binding energies and charge rms radii of C to Pb isotopes.
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B/A (MeV)

Nucleus exp. SCL TM1 TM2 NL1 NL3 I/110 IF/110 VIIIF/100 QMC-I

12C 7.68 7.09 - 7.68 - - - - - -
16O 7.98 8.06 - 7.92 7.95 8.05 7.35 7.86 7.18 5.84
28Si 8.45 8.02 - 8.47 8.25 - - - - -
40Ca 8.55 8.57 8.62 8.48 8.56 8.55 7.96 8.35 7.91 7.36
48Ca 8.67 8.62 8.65 8.70 8.60 8.65 - - - 7.26
58Ni 8.73 8.54 8.64 - 8.70 8.68 - - - -
90Zr 8.71 8.69 8.71 - 8.71 8.70 - - - 7.79
116Sn 8.52 8.51 8.53 - 8.52 8.51 - - - -
196Pb 7.87 7.87 7.87 - 7.89 - - - - -
208Pb 7.87 7.87 7.87 - 7.89 7.88 7.33 7.54 7.44 7.25

charge rms radius (fm)

Nucleus exp. SCL TM1 TM2 NL1 NL3 I/110 IF/110 VIIIF/110 QMC-I

12C 2.46 2.43 - 2.39 - - - - - -
16O 2.74 2.62 - 2.67 2.74 2.73 2.64 2.62 2.69 2.79
28Si 3.09 3.04 - 3.07 3.03 - - - - -
40Ca 3.45 3.44 3.44 3.50 3.48 3.47 3.41 3.40 3.45 3.48
48Ca 3.45 3.46 3.45 3.50 3.44 3.47 - - - 3.52
58Ni 3.77 3.77 3.76 - 3.73 3.74 - - - -
90Zr 4.26 4.27 4.27 - 4.27 4.29 - - - 4.27
116Sn 4.63 4.62 4.61 - 4.61 4.61 - - - -
196Pb - 5.48 5.47 - 5.47 - - - - -
208Pb 5.50 5.54 5.53 - 5.57 5.58 5.49 5.49 5.53 5.49

Table II. Experimental and calculated binding energies and charge rms radii of stable nuclei. Cal-

culated results in the SCL model are compared with those in TM110), TM210), NL18), NL39),

glueball model (I/110)27), frozen glueball models (IF/110 and VIIIF/100)27), QMC-I38), and

experimental data.

In Table II, we show the calculated results of binding energies per nucleon (B/A)
and charge rms radii of doubly (sub-)closed stable nuclei, 12C, 16O, 28Si, 40Ca, 48Ca,
58Ni, 90Zr, 116Sn, 206Pb and 208Pb, in comparison with experimental data and other
RMF model results. We find good overall agreement of the SCL results with exper-
imental data for heavy nuclei. We underestimate B/A of several light nuclei, such
as, 12C, 28Si and 58Ni, by 0.2−0.6 MeV/A. These nuclei have proton or neutron
numbers of Z(or N) =6, 14 and 28, i.e. they are jj closed nuclei. These under-
estimates imply that the spin-orbit interaction in the SCL model is not enough to
explain the `s splittings in light nuclei. There are still discussions on the strength of
the spin-orbit interactions in RMF,44) and it is recently suggested that the explicit
role of pions has large effects in jj closed nuclei.45)–47) Thus the underestimate may
be related to the explicit pion effects.

In Fig. 5, we show B/A of C to Pb isotopes. We underestimate B/A in light
jj closed nuclei and heavy Zr isotopes, the latter of which would be due to the
deformation.10),48) Except for these nuclei, B/A are well explained in one parameter
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Fig. 5. Binding energies per nucleon of Z (sub-)closed nuclei. Calculated results in the SCL model

(solid lines) are compared with experimental data (points) and TM10) models (dashed line).

set in the present SCL model. We also find that the SCL model results of B/A for
heavy nuclei are very close to those in the TM1 model, where pairing corrections
are neglected in TM1 model results. As shown in the top panel of Fig. 6, these two
models give comparable results of nuclear densities. The agreement in the density
distributions is not surprising since EOS and meson (σ and ω) behavior of SCL model
is very similar to those in TM1 at low densities, as shown in Fig. 4. In the bottom
panel of Fig. 6, we find some differences in the single particle energies, especially in
those for neutrons around the Fermi energy.

There are several other chiral symmetric models well describing the nuclear
matter as well as finite nuclei of 16O, 40Ca and 208Pb.27), 28) In these models, they
introduce the broken scale invariance through the glueball field, and from scale in-
variance, this glueball is conjectured to couple with σ in a logarithmic term. In
Ref. 27), Heide et al. proposed a chiral effective Lagrangian containing the glueball,
and investigated nuclear matter and finite nuclear properties. With some of their
parameter sets (I/110, IF/110), one can describe finite nuclear properties reasonably
well, but these parameters give stiff nuclear matter EOS, K > 340 MeV. With the
parameter set of VIIIF, one can obtain reasonably soft EOS (K = 267 MeV), but
the binding energies of nuclei are underestimated by 0.4− 0.8 MeV/A for 16O, 40Ca
and 208Pb. In Ref. 28), Furnstahl et al. extended the terms of the chiral effective
Lagrangian with glueball having eight free parameters. In their work, the binding
energies of 16O, 40Ca and 208Pb nuclei are well described (up to 0.4 MeV/A devia-
tion from the experimental data), and reasonably soft EOS’s (K = (194−244) MeV)
are obtained. Compared to these models, the present SCL model describes nuclear
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Fig. 6. Comparison of nuclear density (top) and single-particle energies (bottom) in the SCL and

TM110) models for 208Pb nucleus. Calculated results in SCL model are compared with those in

TM1 model 10) and experimental data in Ref. 49).

matter and finite nucleai with only four free parameters. The main difference in the
SCL model from these two glueball models may be in the ω self-interaction term,
cωω4, simulating the suppression of ω at high densities in the Dirac-Brückner HF
theory.11)
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§4. Naive dimensional analysis and scalar polarizability

The present SCL model is a kind of effective field theory and contains higher
order terms and is non-renormalizable. Then it would be valuable to examine the
naturalness in the naive dimensional analysis (NDA).29),40), 43) It is found that the
loop contributions with the momentum cutoff Λ ∼ 1 GeV generate the following
terms with dimensionless coefficients Clmnp of order unity,29),43)

Lint ∼
∑

l,m,n,p

Clmnp

m!n!p!

(
ψ̄Γψ

f2
πΛ

)l (
ϕ

fπ

)m (
ω

fπ

)n (
ρ

fπ

)p

(fπΛ)2 , (4.1)

where Γ denotes the γ and τ/2 when necessary.
An effective theory having terms in Eq. (4.1) is considered to hold naturalness,

when all the dimensionless coefficients Clmnp are of order unity. In the present SCL
Lagrangian, we obtain the following dimensionless coefficients,

C1100 =
fπgσ

Λ
∼ 0.8 , C1010 =

fπgω

Λ
∼ 1.2 , C1001 =

fπgρ

Λ
∼ 0.5 , (4.2)

C0n00 =
(n − 1)!

(
m2

σ − m2
π

)
Λ2

∼ 0.23, 1.4 (n = 3, 4) , (4.3)

C0040 =
6f2

πcω

Λ2
∼ 10. (4.4)

We find that the coefficients in the present SCL Lagrangian are natural except for
higher order terms ϕn(n ≥ 5) and the phenomenological ω4 term.

NDA is based on the assumption that internal gluon lines are suppressed by
powers of αs/4π (αs = 0.28),43) but it is not true in the strong coupling limit, where
αs = g2

QCD/4π → ∞. For more serious evaluation of the model naturalness, therefore,
it would be necessary to extend NDA to include gluon lines or to include the effects
of finite coupling effects36) in the present SCL model.

It would be also valuable to examine the scalar polarizability in the SCL model.
In the Quark Meson Coupling model (QMC)38), 40) and NJL model,39) non-linear
coupling ϕ2ψ̄ψ coming from the confinement is proposed to be essential to stabilize
nuclear matter. This coupling gives nucleon mass curvature as a function of scalar
condensate known as the scalar polarizability. We consider here the relation between
SCL and QMC-I by redefining the σ fields as ϕ = ϕ̃ − αϕ̃2. With this redefinition,
the non-linear coupling ϕ̃2ψ̄ψ appears, and the sigma self-interaction term of order
ϕ̃3 disappears when we take α = 2aσ/3f3

πm2
σ,

ψ̄(MN − gσϕ)ψ = ψ̄(MN − gσϕ̃ + αgσϕ̃2)ψ , (4.5)

Vσ =
1
2
m2

σϕ2 − 2aσfSCL(
ϕ

fπ
) =

1
2
m2

σϕ̃2 + O(ϕ̃4) . (4.6)

Thus, except for the ϕ̃4 term, we can map the SCL Lagrangian to QMC-I type having
scalar polarizability in nuclear matter. The positive α value (positive curvature of
nucleon mass) implies that the stabilization mechanism proposed in Refs.38), 39)
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works also in this redefined Lagrangian. Quantitatively, the present polarizability
parameter α is several times smaller than in QMC models,38), 40) and the σ kinetic
term is modified by this redefinition. Therefore, the predictions are different as
shown in Table II.

§5. Summary

In this work, we have developed a relativistic mean field (RMF) model with a
chiral potential Vσ (vacuum energy density as a function of σ) having a logarithmic
term derived in the strong coupling limit of the lattice QCD (SCL-LQCD).32)–37) The
logarithmic potential term of σ is found to have favorable features; it prevents the
normal vacuum from collapsing, and it does not have any instabilities as a function
of σ. We have introduced vector mesons (ω and ρ), their linear couplings to nucleons,
and a non-linear vector meson self-interaction term (ωµωµ)2 in a phenomenological
way in order to fit the nuclear matter saturation point and the binding energies of
finite nuclei. We have demonstrated that both of symmetric nuclear matter equation
of state (EOS) and finite nuclear properties are well described in one parameter
set containing four free parameters. The obtained EOS is comparable to those in
successful but non-chiral models,9), 10) and to that in a chiral model containing higher
order terms of σ.25) Binding energies of finite nuclei are also well reproduced in a
wide mass range from C to Pb isotopes, while the binding energies of several light
jj closed nuclei are underestimated, suggesting smaller spin-orbit interactions in the
present model.

We compare the present SCL model with other RMF models in vacuum and
finite densities in symmetric nuclear matter. We find that the baryon loop (BL)20)

and Sahu-Ohnishi (SO)25) models have instability at large σ values, and the linear
σ model with the σ2ω2 coupling (Boguta model),18),24) gives too stiff EOS. While
the chiral RMF models with glueballs well describe both of nuclear matter and
finite nuclei,26)–31) introducing unobserved glueballs may not be justified in hadronic
models. The energy functional in the present SCL model seems to be very similar
to that in the TM1 model10) at low densities. This point has been examined in the
symmetric nuclear matter EOS and finite nuclear properties such as binding energies,
charge rms radii, nuclear densities and single particle levels. At high densities, the
SCL model gives a little softer EOS than that in TM1. This softness has some effects
on neutron star properties and supernova explosion energies, which will be reported
elsewhere.

Finally, we have performed a naive dimensional analysis (NDA),29), 40), 43) and
reinterpreted the SCL model in terms of the nucleon scalar polarizability.38)–40) In
NDA, we find that low dimension terms (mass dimension ≤ 4) in the SCL model are
natural except for the ω4 term. Since all the NDA analyses have been done without
gluon lines, it is necessary to take account of finite coupling corrections in NDA43)

or in SCL36) for serious evaluation of the naturalness. By using the field redefinition,
ϕ = ϕ̃−αϕ̃2, we can relate the SCL model Lagrangian to that having nucleon scalar
polarizability such as QMC-I,38) while the polarizability is a few times smaller than
those in QMC models.38), 40)
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There are several directions to be investigated further. First, the binding energy
underestimate problem in jj closed light nuclei should be studied in an extended
framework including explicit role of pions.45), 46) Next, it is desirable to extend the
present model to that with flavor SU(3) chiral symmetry. Preliminary works suggest
that we can obtain a softer EOS (K ' 210 MeV) due to the coupling of sigma
meson to hidden strangeness.50) Thirdly, it is interesting to take account of the
finite temperature effects in the chiral potential Vσ. It has been shown that Vσ is
smoothed at finite temperature around σ ∼ 0 in SCL-LQCD,33)–36) then it may be
possible to describe chiral phase transitions from nuclear matter to quark matter at
high temperatures in chiral RMF models.
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Phys. Rev. C 55 (1997), 1499 [arXiv:nucl-th/9609035]; P. Papazoglou, S. Schramm, J.
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