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We investigate instabilities of classical Yang-Mills figlth a time-dependent spatially homogeneous color
magnetic background field in a non-expanding geometry faciéating the earliest stage dynamics of ultra-
relativistic heavy-ion collisions. The background gaugddfconfiguration considered in this article is spatially
homogeneous and temporally periodic, and is introduced dngds-Scheffler-Schlichting-Sexty (BSSS). We
discuss the whole structure of instability bands of flucaret around the BSSS background gauge field on the
basis of Floquet theory, which enables us to discuss thdistat a systematic way. We find various instability
bands on thép., pr)-plane. These instability bands are caused by paramesdnasce despite the fact that the
momentum dependence of the growth rate|fdr< /B is similar to a Nielsen-Olesen instability. Moreover,
some of instability bands are found to emerge not only in tkerhomentum but also in the high momentum
region; typically of the order of the saturation momentunfgs~ v B ~ Qs.

PACS numbers: 11.15.Me, 12.38.Gc, 11.10.Wx, 25.75.Nq

I. INTRODUCTION fields grow exponentially, show chaoticity and may decag int
particles via field-particle conversions. Thus instaieititof

Remarkable properties of the quark-gluon plasma (QGpglassical _fields sh_ould play important roles in thermai@at
have been revealed by the recent ultra-relativistic heamy- N heavy-ion collisions [€-17]. _ N _
experiments at the Relativistic Heavy-lon Collider (RHEZ) It is known for a long time that an instability occurs in
Brookhaven National Laboratory and the Large Hadron Col£l€ctromagnetic plasmas when anisotropy is present. When
lider (LHC) at CERN. Hydrodynamic models turned out to the particle momentum distribution is anisotropic, thetiphe
be successful in describing the transverse momenfuiy ( currentand the background magnetic field enhance each other
spectra and the anisotropic f|0v\l$1Q of hadrons [1_3] The Thls is called the Welbel |n-Sta.b.|||ty [].8] The Weibel insiia .
observation of large elliptic flow parametrized bysuggests ity of the color magnetic field is also expected to emerge in
two important features of QGP; nearly perfect fluidity and9lasma, and has been discussed as one of the triggers leading
early thermalization. The initial spatial eccentricitytbé par- 0 early thermalization in heavy-ion collisions [10} 11,20].
ticipants seems to be efficiently converted to the final momenThe system under a homogeneous and static color magnetic
tum anisotropy. This is only possible when the viscosity isfield shows a differentinstability. Under a homogeneousicol
small enough and the pressure is developed in the early.stag@agnetic field, Landau orbits are formed due to the U(1) com-
Hydrodynamic phenomenology suggests that shear viscosifyonent of the color magnetic field and the lowest Landau
of QGP isy/s = (1 — 3)/4x. Hydrodynamic analyses also Modes may become tachyonic. If this is the case, the resul-
require a short thermalization time,, = (0.6 — 1.0)fm/c  tant instability called the Nielsen-Olesen instabilityl]2is
which is significantly shorter than that evaluated from $ran @IS0 expected as a triggering mechanism of the early thermal
port theories([4,5]. There are no conclusive scenariosdounization in heavy-ion collisions| [22-24].
yet to explain thermalization in the far-from-equilibrilgtage This is not the end of the story. Yet another instability can
of heavy-ion collisions. occur under a homogeneous but time dependent color mag-

Some of the promising mechanisms for early thermalizanetic field. This type of instability is alluded by Bergesh8t:
tion are instabilities which cause rapid growth of a claaisic fler, Schlichting and Sexty (BSSS) [25]. Their analysis base
Yang-Mills (CYM) field followed by its decay into particles. ©n the classical statistical simulation suggests that law m
CYM field theory is believed to be a good starting point for mentum modes become unstable under the time-dependent
describing the earliest stage of heavy-ion collisions. ha t color magnetic field. This instability is seemingly remirest
high energy limit, nuclear wave functions are well expresse Of the Nielsen-Olesen instability, because it is causechby t
by color glass condensate (CGC) effective field thedryl[6, 77homogeneous color magnetic field and the dominant growth
In the framework of CGC, the classical solution gives transJate has similar longitudinal momentum dependence to that o
versely polarized color electromagnetic fields whose seairc the Nielsen-Olesen instability. They also suggest thatethe
are valence partons in the largeregion. The contact of two €Xists a sub-dominant instability band in a high momentum
nuclei converts CGC into the state with longitudinally pela region. Itis caused by the time dependence of the background
ized color electromagnetic fields called glasia [8]. Ctisi field, and thus the underlying nature of the sub-dominant in-

fields in glasma show instabilities, and some of classiasigl ~ Stability is thought to be induced by parametric resonance.
The Nielsen-Olesen instability and the parametric-resoea

induced instability seem to coexist in their study.
However, the analysis on the nature of the instability has
*tsutsui@yukawa.kyoto-u.acljp some ambiguous points to be further elucidated. The Nielsen
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Olesen gauge configuration and BSSS gauge configuration ate concrete examples. In Séc. 11 C, we give a brief overview
not connected with each other by any gauge transformationsf the Floquet theory which is a general mathematical frame-
Moreover, gauge fluctuations do not form Landau orbit un-work to determine instability bands for a given equatiorhwit
der the BSSS configuration, since not only the color magnetia periodic coefficient. The reader already familiar withsthe
field but also the background gauge field is homogeneousopics can skip to Selc. TlID where we apply the Floquet theory
Then one may wonder what is the genuine nature of the instae CYM theory.
bility induced by the homogeneous but time-dependent color
magnetic fields; parametric or Nielsen-Olesen instalfiliQr
does the one induce the other? A. CYM equation under a homogeneous color magnetic field
In this article, we perform a systematic investigation & th
instabilities of classical gluon fields under the homogerseo  We briefly summarize CYM equations for the background
but time-dependent background color magnetic fields in théield and fluctuations under a homogeneous color magnetic
linear regime. Specifically, we consider the BSSS initial-co field. Throughout this article, we consider SU(2) pure Yang-
dition [25] shown in Eq.[(B) for the background field, whose Mills theory in the temporal gaugd$ = 0 with a homo-
solution is known to be the Jacobi elliptic function. We ana-geneous background color magnetic field in a non-expanding
lyze the stability of fluctuations around the BSSS backgdoun geometry. This setup is not very realistic for heavy-iorieol
gauge field systematically on the basis of the Floquet theorsions, but it contains some essence of glasma dynamics.
which consists the basis of the Bloch theory. In this setup, w  In SU(2) pure Yang-Mills theory, color magnetic fields are
can precisely obtain growth rates of the fluctuations by-solvdefined by
ing the equations of motion for a given momentum during one .
period of the background field and by evaluating the eigenval a_ . _Aa _ L _abe gb ge
ues of a3(N2? — 1) x 3(N? — 1) matrix called a monodromy Bl = ek (aJAk 2° AjAk) ’ @
matrix for color SU(V.). As a result, we get the complete
structure of the instability bands in the whole momentum rewhereA? is a gauge field ane'* is the Levi-Civita symbol.
gion not only in the longitudinal but also transverse dimats ~ The superscriptg, b, ... and the subscripts j, ... denote
caused by a parametric resonance. color and Lorenz indices, respectively. The gauge coupling
Parametric resonance plays an important role in many fieldgonstant is included in the definition of the gauge fields.
of physics. For instance, it would contribute to preheating There are two types of gauge configurations to make homo-
in the early universe in cosmic inflation [26-29]. Parantetri geneous color magnetic fields. One is the abelian configura-
resonance also might trigger thermalization in heavy-inla ¢ tion such as
lisions because it can give rise to rapid particle productio 1 1
Instability due to parametric resonance inN)(scalar field AS = —531/, Af, = 5356- (2)
theory has been analyzed and an exponential growth of the
particle number is demonstrated in numerical analyises [30F¥he Nielsen-Olesen instability is induced by the color mag-
32]. The present analysis should give a general and lucidetic field in the above configuration. Because of the spa-
mathematical basis of the parametric resonangeapamet-  tial dependence of the background gauge field, the traresvers
ric instability ubiquitous in many fields of physics. motion of gluons is quantized to form Landau levels. The
This article is organized as follows. In S€d. Il, we explain Nielsen-Olesen instability is caused by the particles i th
our setup, fluctuations of the CYM field around a homogeJowest Landau level, whose eigenfrequency becomes com-
neous time-dependent color magnetic field. We also give baplex.
sics of parametric instability and a brief overview of the+I The other configuration is the non-abelian configuration
guet theory, which is applied to analyze instability bankis. given as
Sec.[Ill, we show numerical results of instability bands of - ) .
Yang-Mills fields. Finally, we give a summary and discuss Af = A(t) (5a diz + 0% 5@) ’ ®3)
the relevance of these instabilities to the thermalizatiche

early stage of heavy-ion collisions in SEC] IV which depends on time but not on spatial coordinates. There-

fore, both color magnetic and gauge fields are homogeneous.
As a consequence, the system is invariant under translation
towards any direction, and the momentum is conserved. This
point is completely different from the former case.

The instability of a few low momentum modes under the

non-abelian configuration was first discussed by BSSS [25].
We discuss instabilities of fluctuations of the CYM field The classical Yang-Mills equation is given by

under the BSSS background field. In ec.JIl A, we derive the )

linearized equation of motion (EOM) of the fluctuations and A? — (DjF;)* =0, 4)
show that the EOM is a special case of a Hill's differential

equation. It is well known that solutions of a Hill's differe ~ Which is reduced to

tial equation show instabilities called parametric resmea In £ g

Sec[1IB, we review basics of parametric resonance accgrdin A+ A% =0, (®)

II.  INSTABILITIES UNDER A STRONG COLOR
MAGNETIC FIELD
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by virtue of Eq. [B). ~ which is to be imposed on? at the initial time. Note that
For instance, with the initial condition a§(t = 0) = /By Eq. (12) is satisfied in a trivial way whetf = 0 which im-
andA(t = 0) = 0, the solution of this equation is given by plies that the background field Edl (6) satisfies the Gauss'’s

law.
A(t) = /Boen (\/B_Ot; 1 /\/5), (6)

wherecn (¢; k) is the Jacobi elliptic function of modulus
The period ofA is given by the complete elliptic integral of _ _ _ )
the first kindK (k); T = 4K (1/v/2)/v/Bo ~ 7.42/+/By. In In this subsection, we give a brief account of general as-

this way, the background gauge field is a periodic function inPects of instabilities under a periodic perturbation. Engise-
time. nomena are well known as parametric resonances or paramet-

By the shift A% — A% + a%, we get the EOM of the fluc- ric instabilities. First, we consider Mathieu’s equatiomrder
tuations described by?. Since the background gauge field is t0 see how parametric instabilities occur. Mathieu’s eiquat
homogeneous, we can work with the EOM for each FourielS one of the simplest Hill's equation which has non-trivial
component of fluctuations in the linear regime. The lineatiz  instabilities;
EOM for af is given by

B. Parametric instability

f=—(\+2ecost) f. (13)
a 21 A ab b
a; = -0 [A(t)]ij aj (7 For simplicity, we assumg > 0 ande < 1. We can investi-
~ab . i gate the stability of the solutions of Eq. {13) in a pertuimat
whereQ?[A]. . is a9 x 9 matrix as
ij way when the external force terr¢ cost, can be regarded

) - " as small. When we expantlt) asf = fo+¢f1 + ..., the
[p 0ij — pipj + A%(20i5 — dialjz — 51'953'?!)} 0 lowest order solution is given bfy = Age’V>t + c.c, andf;
_ A2 [(5” _ 5iy5jy)6a16bl + (5” _ 5im5jz)5a26b2] follows

+ i A(=2pabij + pidje + pjdin )€™ A+Af=—-4 (e“ﬁ“)t + e“”‘”t) +cc.. (14)

(—

- A alb
- Zi 2y0i; + Pidsy +p‘ifzyb); This is the EOM for a driven oscillator. Its eigenfrequency
+ A%(=0iabjy + 20iy02)6"" 6 is v/X and the frequencies of external forces &f& + 1. If

+ A%(=6iy6j0 + 2612:0;,)5°%6" . (8) A = 1/4, the oscillator resonates and becomes to be ampli-

_ ‘ _ B fied. In general, such resonance occurs i= n?/4 (n =
Without loss of generality, we can takg = 0 due tothe ro- 1 2 ). Moreover, there are more sophisticated perturbative
tational symmetry in the transverse direction. Then, we cafechniques to determine instability boundaties A(e) [34].
easily find that the coefficient matr* is a block diagonal-  For example, the instability boundaries of Mathieu’s equa-
ized matrix as tion passing through the poifh, ¢) = (1/4,0) are given by

2 . 2 2 )\:1 4:|:€—62 2+O€3.

27 = diag (2, %), ) For/the purpos/e to argal)zze instabilities of CYM fields, it is
where0?2 and2 are4 x 4 and5 x 5 matrices, respectively. instructive to consider Lamé'’s equation. Lamé’s equato
The explicit forms of the matrices are given in Appendix A. @ little more complicated than Mathieu’s equation, whick ha
Thus, the linearized EOM far? is decomposed into two sec- the elliptic function as an external force term insteadasft;

ab

ij

Q?[4]

tors; .
) f=—(+en?tk)) f. (15)

i = —QF[A(t)], 508, (10) . L, . .

. e In fact, we will see that Lamé’s equations with= =+1,3

da=—Q5[A1)] s pas- (11) andk = 1/\/5 are obtained for some momentum modes in
We use following notations, 3, --- = (1y, 2z, 2z, 3y) and the linearized EOM for fluctuations, Eg$§.{10) abd](11). In

_ particular, Lamé’s equation with = —1 leads to the largest

A, B, =(lx,1z,2y, 3z, 3z2).

Equation [7) or Eqs[{10) anf{11) are second order linea rowth rate of the above three cases, and it also describes th
ordinary differential equations with a periodic coeffidiema- YM equation for the fluctuation mode having the maximum

trix. This type of ordinary differential equation is callefil's growth rate. We also_menti(_)n that.these eq,u,ations h.av_e agood

equation. In general, Hill's equation has unstable sohstio property in an analytical point of view. Lamé's equatiorigw

due to the periodicity of the coefficient matrix [33]. €= 1’?|’ ‘?nd k[2:8 1@//3 ar(i exi\ctly sollvab(ljefto get ch;)_sed
The solutions of Eqs (10) and {11) must satisfy the Gauss’gorm solutionsi[2B]. er = —1, any closed form solution

law. The Gauss's lawD; (A; + d;)® — 0 in the order 0f(a) Is not known, but its solution has been investigated analyti
i g.iven by nee cally [25]. The perturbative approach mentioned abovesis al

a general framework and it can be performed in a parallel way
ipia® + eabe [6‘72 (Aac _ Zlac) Iy (Aac — Aat } —0 as the analysis for Mathieu’s equation, but its applicgbit

¢ ¢ * Y Y ’ still limited. It is valid only for0 < ¢ < 1. The details of
(12) perturbative calculations are presented in Appehdlix B.



Instead of these analytical techniques, we will use a more Let us take a single component Hill's equation;
general framework to find unstable modes together with their . )
growth rates utilizing numerical calculations. f=-w)f, (20)

wherew?(t + T') = w?(t). In general, a second order equa-
tion can be transformed into a first-order equation with two

C. Floquet theor ; .
a y components. In fact, by putting = (f, f), we have

We can perform precise stability analyses of the linearized df 0 1
EOMSs, Egs.[(I0) and(11), by using the Floquet theory, even i <—w2(t) 0) f (21)
though it is difficult to obtain analytic solutions.
In this subsection, we give a brief overview of the FloquetThis equation can be easily analyzed as we will see.
theory (see also the appendix of[[35]). Because of the conservation of the Wronskidu, ®(t) =
Suppose an ordinary differential equation of ordérave a  f, f, — f,fo, we finddet M = uipu0 = 1 by taking the
T-periodic coefficientP(t), i.e. determinant of Eq.[{18). Therefore, the eigenvalues of the
monodromy matrix follow the characteristic equatiq¥; —
af =P@{t)f, P{t+T)=P(t), (16) (t_r Mu+1 =0. Thus, the. stqbility of the solution of a
dt single component Hill's equation is governedtn\/ as
wheref is an-dimensional vector anB(¢) is ann x n matrix. 1. If |tr M| > 2, the solution exponentially diverges.
The fundamental matrix of E_(IL6) is defined byndepen- o o )
dent solutiong ¢, }i—1.....n; 2. If [tr M| = 2, the solution is (anti)periodic or linearly
diverges.
() = (61 (1), Bn(t)) (17) 3. If | tr M| < 2, the solution is bounded.

If ®(t) is afundamental matrix(¢+7') is also afundamental  Thjs fact simplifies the stability analysis of a single compo
matrix due to the periodicity of the coefficient matri®(t).  nent Hill's equation because we can discuss the stability-wi
Then, there exists a constant matkiksuch that (¢ + T') = out diagonalizing)/.
@(t)M. M is called a monodromy matrix. By construction,  To see how the general Floquet analysis is performed, we
®(t) is a regular matrix and we can get the monodromy matrixshall go back to the stability analysis of the Lamé’s equa-
M as tion (I8), where the periodic coefficient?(t) is given by
. the elliptic function. Here, the parametexsande are arbi-
M = @(0)~ o(T). (18 trary. As we mentioned in the previous subsection, the lin-
) ) earized CYM equations, Eq$. (10) and](11), take a form of
It should be noted thatet M # 0 since® is regular. The | 5 ers equation for some momentum modes. For instance,
fundamental matrix is represented by the monodromy matrnEq' [10) becomes block-diagonalized and is decomposed into
as two simultaneous equations for zero transverse momentum
+ modes p, = p, = 0) or zero longitudinal momentum modes
O(t) = F(t)exp ((log M)T) , (19)  (p. = 0). The EOM for these modes in CYM theory are sum-
marized in AppendikA.

We here consider the equation far,,a2) of zero trans-
ofverse momentunp( = p, = 0) shown in Eq.[(AY). We can
nflecompose the EOM Eq. (A7) into two equations which give
Lamé’s equation witkk = —1,3. We also consider an equa-
tion for as, of zero longitudinal momentunp{ = 0) shown

in Eq. (AI8). This gives Lamé’s equation with= 1;

where F'(t) is a T-periodic matrix. The specific form of
F(t) is not relevant for our discussion. The eigenvalues
M are called characteristic multipliers and we denote the
asuq,..., M, Characteristic multipliers determine the long-
time behaver of the solutions. We can categorize the sabili
att > 0 by using the characteristic multipliers as follows.

. —0) — 2 2
1. If |u| > 1, the solution exponentially diverges. a’f (0;pz,pr = 0) = — (p2/Bo + 3en*(0)) ay,  (22)
a’ (0;p.,pr =0) = — (p?/By —cn?(0)) a_, 23
2. If |u] = 1, the solution is (anti)periodic or polynomially . (6:p5, P ) (p2/ 0 2( )) (23)
diverges. ay,(0;p- = 0,pr) = — (p7/Bo + cn’(0)) azs,  (24)

3. If |u| < 1, the solution is bounded. wherea. = a; + a3 andd = \/Bot. Primes denote deriva-

tives with respect t@. Unless otherwise noted, the modulus
Thus, whenu| > 1, the solution is unstable and the growth of elliptic function isk = 1/+/2. We note that Floquet anal-
rate of the unstable solution is given by the exponefif’  ysis can be done by a quite simple numerical calculations. In
according to Eq.[{19). This exponent is sometimes called addition, there is no constraint feto apply Floquet theory to
characteristic exponent. Whepn| = 1, the solution can be Lamé’s equation.
also unstable with a polynomial growth. This is caused by the Figurd1 showsr M of Egs. [22),[(Z2B) of{24) as a function
degeneracy oM. of p2/By or p2./By. The instability bands are specified by



|tr M| > 2. In this calculation, we set the initial fundamen-
tal matrix as a unit matrix, i.e®(¢t = 0) = 1. All we have

to do is to solve Eqs[(22) anf{23) for a periddnumeri-
cally at a given momentum. After solving them, we easily get
tr M = tr ®(T) by Eq. [18) as a function of squared momen-
tum normalized by the initial background magnetic field.

The emergence of the first instability band @f (0 <
p?/By < 0.41) is easily expected from the form of EG.{23).
The eigenfrequency ai - become complex for sufficiently
small momentum? < B since it is approximately given by
w ~ /p2 — B(t). On the other hand, the instability bound-
ary is modified from the naively expected opg&/By = 1
to p?/ By = 0.41 due to time dependence of the background p Z/B
field. The remarkable feature of this band is that the unsta- z'-0
ble modes in this region has quite large growth rate since
tr M > 2. The same band structure appears in Yang-Mills 3
theory, as we will see later.

We also find the instability band af, (3/2 < p?/B, < 2

1
0

trM

V3), the second band af_ (0.91 < p?/B, < 1.42) and the
instability band ofaz. (0 < p?/By < 1/2). These instabili-
ties are the consequence of parametric resonance, andtare na_
intuitively expected from the forms of EqE_{24).123) and)2

D. Application to Yang-Mills theory -3 ‘ ‘ ‘ ‘

0 0.5 1 1.5 2 25 3
The Floquet analysis of a multi-component Hill's equation p-|-2/BO

can be done in much the same way as the single-component

analysis. In this subsection, we apply the Floquet theotlyeo
CYM equation. Equatiori{7) is also transformed into the firstriG. 1: Floquet analysis for EqE22)123) afidl(24). Thedsda

order equation by introducing color electric fielgs= a{. area denotes the instability bands specified bygther pr-region
d /g0 0 5968\ [ab with [tr M| > 2. These are the consequence of parametric reso-
el ( 3’1) — < 2/ \1ab ”) < g) (25) nance. The instability bands af (Lamé’s eq. withc = —1) are
dt \ €] —[Q@*®ly o ] 0 < p2/Bo < 0.41 and0.91 < p2/B, < 1.42. The instability

. - S x ithe — 2) i 2

The simplest way to calculate characteristic multiplierssi ~ Pands ofa:. (Lamé’s eq. withe = 3) is 3/2 < p2/Bo < V3.

set the initial fundamental matrix as a unit matrix as we haveg Q/eB'nStjbi"t%’ bsr(])?s tﬁgize)((:imi sta%?l-itymtl)lf)huen dzrieli I:n(e) kﬁown
; . ; e g 2/By < )

dpne n the previous subsectl_on. For the Yang M'."S. .flel.d’ th for e = 1, 3 [28]. Our numerical calculation agrees with that.

situation is somewhat complicated because the initial cond

tion ®(0) = 1 does not satisfy the Gauss’s law{12). As a

consequence, we need to worry about picking up the instabilig g, simplicity, we concentrate art anda? which satisfy the

ties of unphysical channel. We shall show here how to eXtra%llowing equations of motion,

physical instability bands in the framework of the Floqunet-t

ory. Att = 0, Gauss’s law reads d2 al A2 iAp. ol
; be (b2 b1 az\ad) =~ " \iA 2y 42) \a3 )" (30)
iefpi/\/ Bo + €7 (675, 4 6"'es) = 0. (26) « 1Ap: P x
Here we have used(t = 0) = /B, andd,A(t = 0) =  Forp. # 0, one initial condition which satisfies Eq.(27) is
0. To search for physical unstable modes, we must solve th@iven by
EOM from a initial condition consistent with the Guass’s Jaw
Eq. (26). 10 0 0
In the following we give an example with, = p, = 0. Ut =0) = 01 0 . é)
The generalization tp,,p, # 0 is straightforward. Then, 0o 1 iv/Bo/p-
Eq. (26) becomes 0 0 —ip./v/Bo 1
ielp.//By = —é, @7) = <‘I’(t:0) 1‘) : (31)
ie?p./\/Bo = 63, (28)

whose basis set ial, a3, el,e3}. The3 x 3 matrix ® con-
- 3 _ .1 2 X N PRt R SR -
iezp=/ vV Bo = ez — ¢ (29)  sists of three independent modesa? ande!. After solving



Egs. [30), we get(T") and henceb(T). This is the way to |“|max
construct the monodromy matrix for constraint systems. 2

In practice, the fluctuations in the unphysical channels are
found to show no unstable behavior and we can obtain the
growth rate of the physical modes by using the initial condi-
tion ®(0) = 1. We will discuss this point later.
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IIl.  INSTABILITY BANDS OF YANG-MILLS EQUATION 5

A. Global band structure

We determine the characteristic multipliers of the claasic
Yang-Mills equation by numerical calculations. Due to the
axial symmetry along-direction, the characteristic multipli- 0

ers are the function qf. andpr = /p? + p2. We calculate 0 1 2

the maximum characteristic multiplier as a function of mo- pzleO

mentum(p., pr) by solving Eqgs.[(T0) and(11). In Figl 2, we

show the contour map of the instability bands, where lpgth

andpr are reisca.‘bd by th(? initial Strength.Of the.backgroun ills equation under oscillating color magnetic fields. Timax-

color magr_letlc field5,. This contour map is obtame(_j solely imum characteristic multiplier is calculated as a functiwiboth

on the b§15|s of_l_:l_oquet theory, an_d t_hus th_e_ _underlylng Batur, .. wherepr — /P2 + p2 is a transverse momentum. Baih

of these instabilities are parametric instabilities. andpr are rescaled by the initial strength of the background color
From Fig[2, we find that the instability band in the low mo- magnetic fieldB,. The dominant instability band in the low momen-

mentum region aroungf / By ~ 0 has the largest growth rate tum region has an anisotropy. Transverse momentum direcfithe

and has an anisotropic shape. There is a broad instability relominant band is broader than thagtdirection which extends up

gion in the direction ofp; which extends up te2 /B, ~  top7/Bo = 1.75 while thep. direction up top?/By = 0.81.

1.75, while the instability region in the.-direction up to

p?/Bo = 0.81. The typical unstable region witfu|max > 5 o ) ) )

extends in the longitudinal and transverse momentum rangdhultipliers || obtained from the decomposed equation with

p?/By < 0.37 andp2./B, < 1.19, respectively. It means the matrixQ}(/ = A,B,...G).

that the fluctuations is amplified by a factor 5 after a period FOr pr = 0, the fluctuation fields;, a, a2, a, anda?

of background field in the region. If the strength of the back-may be unstable and have larger growth rate than other com-

ground color magnetic field is scaled by the saturation moPonents. Almost all of these modes are relatedsfp and

mentum, the instability boundaries discussed here liespp May modify the background color magnetic field. The dom-

imately atp> ~ B ~ Q2. Itis worth emphasizing that we find inant instability bands of2% and Q% systems range from

instabilities in both low momentum regign< Q, and high ~ p%/Bo = 0 to p2/By = 0.81 and top?/By = 0.41, re-
momentum regiop ~ Q. spectively. Their growth rates become larger in the smaller

momentum region. This dominant instability band is consis-
tent with that found inl[25].

The lower panel of Fig.]3 shows the instability bands for
p. = 0. In this case% and % systems show the largest
growth rate where the corresponding fluctuation fieldsagre

Now, I_et us try to understand th(_e or|g|n_0f the |nstab_|l|t|es anda?. The ranges of the dominant instability band of these
present in some other bands semi-analytically. For this pur v

2
pose, we consider two particular limits — 0 andp. — 0 of systems are broader than that@4 and Q% systems. The

linearized EOMs of fluctuations Eq$._{10) ahdl(11), then web"’mdzS of3, and % systems extends up 16./By = 1.75
get simpler equations. Fpr = 0, Egs. [10) and (11) are de- andpz./Bo = 0.88, respectively.
composed into two equations whose coefficientsS(gre:?
and?, 02, respectively. Similarly, fop, = 0, we can de-
compose Eqs[{10) anf{|11) into two independent equations
whose coefficients a®?,, Q2 andQ?,, 0%, respectively. See . _ . _ o
AppendixA for the explicit forms of these matrices and their N this subsection, we discuss the mathematical origin of
relations. These decomposed equations are easier to trdB€ band structure. Suppose that eigenvalues of a coefficien
since their ranks are at most three so that they give insighfatrix Q7 (I = A, B, ... G) are given byw,, ..., w7, and
into the whole band structure. Q7 is diagonalized by a unitary matrix;;

Figure[3 shows the band structuregin = 0 andp, = 0- B )
regions. Each line shows the maximum value of characteristi U (OQF)Ur(t) = diag (Wi, - -, why)- (32)

IG. 2: The contour map of the instability bands of classiaig-

B. Band structure for pr =0andp, =0

C. Effective reduction of EOMs



acterized by the eigenvalues®©f;

d2
Wa' = —diag (wW?,,...,w?,,)a’, (34)

a =U;a. (35)

Only the O3, system (EOM fora, and a?) satisfies the
above condition. In this case, corresponding unitary méri

given byUp = 1//2 G _11) and actually does not depend

on time. Eigenvalues db% are given byw?, = p? + 342
andw?, = p? — A2. As aresult, we find two types of Lamé’s
equations, Eqs[(22) anf{23), and hence some parts of in-
stability bands fop; = 0 are exactly described by Lamé’s
equations. Our numerical calculation confirms this poirtt an
the result is shown in the upper panel of Higl. 4. The first
and second instability bands 6% system (red solid line)
are found in the momentum range @f< p?/By, = 0.41
and0.91 < p?/By < 1.42, respectively. They are identi-
cal to the instability bands of Lamé’s equation witk= —1,

Eq. (23) (blue dashed line). The third instability band resg
fromp?/By = 3/2top?/By = +/3 and this is identical to the
band of Lamé’s equation with = 3, Eq. [22) (magenta dot-
ted line). The instability bands of Lamé’s equations asmal
depicted in Fig[1L.

If Us(t) varies slowly in time, EOM of fluctuations are
effectively reduced to a single component Hill's equation;
AIm = —w?malm. For example, such an effective reduction
seems to occur in th@? system (EOM fowl, a2 anda?). In

x? Yy
fact, the eigenvalues 6% are given by

‘ ‘ ‘ ‘ why =2 — A%, (36)
1 - = .
0 1 2 2 3 4 5 wiy == (pﬁ +2A4% £ \/p‘; + 6p2 A2 + A4) . (37
Pr/Bg 2
- . _and one of the resultant single component equation has the
FIG. 3: (top) Instability bands fopr = 0. The lowest instabil-  t5rm of Lamé’s equation wita = —1. We compare the insta-

ity band of Q% system (red solid line) an@% system (blue dashed

bility bands of the original EOM and three Hill's equations.
line) located a0 < p?/By, < 0.41 have the largest growth rate. Y g q

This dominant instability band is consistent with that fdun [25]. T';‘e upper panel Of_ F'@ 4 _Shows that t_he |nstab|I|ty,l’)ands of
(bottom) Instability bands fop. = 0. The lowest instability band QA system (red SOI_'d line) is well descrlb_e(,j by Lame S equa-
of Q2 system (red solid line) an@2 system (blue dashed line) tion (blue_dashgq line). The other twolHlll s equations show
have the largest growth rate. They have broader band anti read® Weaker instability than Lamé’s equation. While thred'sfil
p%/Bo = 1.75 andp%/ By = 0.88, respectively. equations do not completely reproduce the band structure of
Q2 system, the bulk structure is reproduced and the time de-
pendence ol 4(¢) is considered to be small.
The dominant instability band ipy = 0-region is seem-

In generall/; depends on time becaugé includes the back- ingly reminiscent of the Nielsen-Olesen instability as-dis
ground gauge fieldd(¢). Multiplying an original EOM of cuss/e,d inl[25]. However, the dominant band is described by
fluctuations byU; ! (¢) from left, we get Lamé’s equation withh = —1, Eq. [23), in botf2, andQp
systems. Therefore, we conclude that the Nielsen-Olesen in
stability like behavior actually comes from parametrictans
2 bility.
= —diag (wjy,-..,w},)U (e, (33) It should be noted that, in contrast®} andQ?, systems,
the other EOMs cannot be regarded as a set of single com-
ponent Hill's equations. For th@% system, the two Hill's
wherea is a corresponding gauge field. For instanee= equations have some instability bands while the origindVEO
(al,a?,a?) for I = A. Therefore, if and only iU; is con-  has no instability band. Fgs, = 0, there is a substantial

T Y 'z

stant, the equation is decomposed into decoupled ones chatifference in the band structure between the original EOM

_ d
U; l(t)ﬁa
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p, /By pzle0 p, /By
103 QD Q — QF -
Wpg ——— 1P Wgp ——— 1P Wpy ———
@ Wpp wreoee Wgp ~=oeee S SR
3107 P Y T 3 . Wez —-— 3
£ 00 >~ T <10+ £ 10}
10" | 1
-~ ) - L \ \ e .
100 L\ 100 A . £_ [0 ] 100 L) - oo )
0O o5 1 15 2 25 3 0O 05 1 15 2 25 3 0O 05 1 15 2 25 3
Pr/Bo Pr/Bo Pr/Bo

FIG. 4. The comparison of instability bands of original EOkfsulti-component Hill's equation witt2?) and single component Hill's
equations (denoted hy?,,). (top) Q% system is effectively reduced to three single componertsHifjuations and one of them is Lamé’s
equation withe = —1. The instability bands of the Lamé’s equation are denotetllbe dashed line. This result shows that most bands of
the original EOM including the first band are well reprodudsdLamé’s equation% system is exactly reduced to two types of Lamé’s
equations. They also lead quite unstable behavior in low emtom region. Fof)Z system, two Hill's equations fail to reproduce the
original bands. (bottom) The change of instability banddrisstic inQ%,, Q2% systems.The time dependenceldf makes instability regions
considerably narrower for these equations.

and a set of single component Hill's equations. Actuallg th
lower panel of Figl 4 shows that Hill's equations fail to repr
duce qualitative behaviors of instability bands of the i)

EOMSs. In this sense, even for the dominant instability band, ' ' 0. .

the interpretation of band structure in terms of Lamé’saequ Q,(phys

tions is valid in very limited cases. 10% A |
1.2

D. Implication to unphysical sector

l'lfT]aX
=
<L
=
P

. L 0.9
In our calculation, we have constructed the physical ini- 3 35

tial condition which is consistent with the Gauss'’s law in or

der not to pick up the instabilities of unphysical modes. We 10
present the construction of physical initial conditionr@at : : : :
duced in Sed_IID. We have also confirmed that the solution 0 1 2 3 4 5
att = T satisfy the Gauss’s law numerically. In practice, p Z/B

we can start our calculation from the simple initial coratits z'-0
which do not necessarily fulfill the Gauss’s law. We compar
t"_VO _cgl_culatlon_s_ using physical initial co_ndltlon and umia- initial condition and a unit matrix initial condition. Thed solid line
trix initial condition given by®(0) = 1. Figurel5 shows that  genotes the instability bands 6F, system calculated by physical
the maximum characteristic multipliers 6f; system using intial condition. The blue dashed line results from thetunatrix
two different initial conditions. In principle, the calatlon jnitial condition.
resulted from the unit matrix initial condition can contée

contributions from unphysical modes, however, the two re-

sults completely agree with each other. This property simpl

fies the Floquet analysis. In addition, this result meanttiza

unphysical sector does not contain unstable modes, so-all in

stabilities we get are physical ones. We also find this ptgper We have studied the nature of instabilities of the classical
for full band structure. Yang-Mills equation under the time-dependent homogeneous

eFIG. 5: Comparison of instability bands obtained with a ptais

IV. CONCLUSIONS
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color magnetic field in the linear regime. The backgroundtant to consider how the parametric instability is affedbgd
color magnetic field considered in this article is realizgdhi®  longitudinal expansion and inhomogeneity of the backgdoun
Berges-Scheffler-Schlichting-Sexty (BSSS)|[25] gauge- confield. In a longitudinal expanding geometry, strength of the
figuration which does not have spatial dependence, and thusteckground color magnetic field would damp and the growth
transverse momentum is well defined. It is known that thereaates of the unstable modes become small. Thus, longitudina
exists a dominant instability region gf /By < 1 under the expansion would make the signal of the parametric instgbili
BSSS gauge field. It is also suggested that there is a sulveak. Spatial inhomogeneity of the background field is also
dominant instability band at? /B, > 1. Thep.-dependence expected to suppress the parametric instability. If théesoh

of the growth rate in the dominant instability region belsave inhomogeneity is given by the saturation sc@lg the rele-

as if it is caused by the Nielsen-Olesen instability. Howeve vant modes of the dynamics hayé > Q? ~ By. Indeed,

the growth rate must also depend pn, and the band struc- the parametric instability in the region is weaker than that
ture in (p., pr)-plane was not investigated so far. We havelower momentum region ag® < Q2 ~ By. However, as
made linear analysis in order to search for the complete barmgle have mentioned above, the growth rates of unstable modes
structure and to reveal the nature of the instabilities. Flee  aroundp? ~ Q% ~ B, are not so small and they may affect
guet analysis is best suited to determine instability banied  the early stage dynamics. The qualitative discussionseseth
and we have applied it to the Yang-Mills theory. points are kept for a future work.

We have found that there is a broad instability band which
have the maximum growth rate around zero momentum region
in the (p., pr)-plane.

Forpr = 0, the band reacheg / By ~ 0.41 and this result
is consistent with Ref[ [25]. We have also found many other
sub-dominant instability bands. Moreover, we have redisco
ered the Nielsen-Olesen instability like behavior of thendto We would like to thank J. Berges, K. Itakura, B. Miller,
nant instability band imr = 0-region. However, in the sys- S. Schlichting and R. Venugopalan for useful discussions.
tem considered in this article, the background gauge fiedd do The authors also would like to thank the participants of the
not form Landau levels, and thus the present instability hadishinomiya Yukawa Memorial & YIPQS workshop on “New
nothing to do with the instability of the lowest Landau level Frontiers in QCD 2013” (YITP-T-13-05) for useful discus-
namely the Nielsen-Olesen instability. We have inveséigat sions. This work was supported in part by the Grants-in-
the mathematical origin of the seemingly Nielsen-Oleskes li Aid for Scientific Research from JSPS (Nos. 20540265,
behavior. As a result, the dominant instability band which23340067, 24340054, 24540271), the Grants-in-Aid for Sci-
is reminiscent of Nielsen-Olesen instability is dominabgd  entific Research on Innovative Areas from MEXT (No. 2004:
Lame’s equation whose dispersion relation is effectivalgy 23105713, and No. 2404: 24105001, 24105008), by the
Yukawa International Program for Quark-Hadron Sciences,
by a Grant-in-Aid for the global COE program “The Next
‘Generation of Physics, Spun from Universality and Emer-
g - gence” from MEXT. S.T. is supported by the Grant-in-Aid
result of parametnc_lnstab_l_hty. . . for JSPS fellows (N0.26-3462) and JSPS Strategic Young Re-

For p. = 0, the instability band which has the maximal searcher Overseas Visits Program for Accelerating Brain Ci
MEulation (No.R2411). T.K. is supported by the Core Stage

Back UP program in Kyoto University.
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by w = 1/p? — A2(t), due to the effective reduction of the
original EOMs. Therefore, we have concluded that the ori
gin of all these instabilities considered here is regardeithe

inant instability band is broader than thatigf = 0 case, and
it extends up t@p2 /By ~ 1.75.
It is instructive to consider whether the parametric intab
ity considered in this article persist or not when the nonlin
ear interaction between gluons becomes important. When the
background field loses its energy and the amplitude of gauge  Appendix A: CYM equation on pr = 0 andp. = 0
fluctuation becomes comparable to the background {ighd,
the nonlinear effects cannot be negligible, and thus th@4ins 1.
bility bands defined in the linear regime lose their validity
is expected that the signal of the resonance bands in the high
momentum region may be quite weak, since their growth rates In this appendix, we give the specific form of the linearized
are much smaller than the growth rate around the zero momegduations for the fluctuation of gauge fields. The coefficient
tum. However, fopp. = 0, the growth rate varies gradually matrix of EOM for fluctuations¢ is denoted by?? as in Eq.
as a function ofp; and the range of the instability band is (@)- Without loss of generality, we can tajig = 0 due to the
broad. Even fop2./B, ~ 1, the growth rate is not so small. rotational symmetry of transverse direction and the EOM is
Such a momentum dependence of the growth rate is unique #£composed into two independent sectors,
the parametric instability, and the behavior of the grovetier
is expected to be seen in full numerical calculations. These
studies are in progress. B 9 11 9 3 3
From a phenomenological point of view, it is also impor- %4 = —[5)apas, aa=(ay,a;,ay0;,07),  (A2)

Notations

io = —[]apas,  aa = (ay,a2,a2,a3),

(A1)
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where each coefficient matrix is given by For the case, = p. =0,
~ ~ - 1 1 1 1
P2+ p?+ A2 2A2 0 —2ip, A d? 25 _ Z% () _ 02 “
o T2 . ~ ) — T 9¢D ’ 2 Qg = —VE | 0y )
02— 24 p2+ A —pzpz —ipz A a? \ 4 S A2\ 5 a3
L 0 —PzP= p3 + A —ipzA 7 d? ml : d? ! !
. 1 2 CLZ o 2 CLZ 2
2ip, A ipe A ip A pR4pi+ A - (ai) =-0% (ai) , opts = —0%4a?, (Al14)
(A3)
- ~ where each coefficient matric€s are given b
P2 —pap.  —A? 0 ip A & are g Y
~DPzP= p;% + A? O Z.pzA~ —21'1)114 0 _AQ 0
0 _szA szA p + A2 _pmpz 0 iAp, A?
—szA 2zpr szA —PzD2 pm +2A2

p2 4+ A2 242 —21Apz
02 2A2 A2 —zApg , (A16)
21Apm ZApm p92c + A?

(A4)

=
|

When we consider certain limits, the EOM becomes simpli-

fied. For the caspr = 0, the EOM is reduced to four equa- 02 = pa+ A? _2i121pm2 (A17)
tions, 22Apm pm +2A
1 1 0% = (p2 + A?). (A18)
d_2 2| _ _2 2 a* (a, —_2 a% Their eigenvalues are given by
a? | " Ay ae \a; B\aZ ) ]
# # me (A2 + pT)me - A4 Z + AG = Oa (Alg)
4 Gi 2 (l,lz d? GE *2 aﬁ 2
a2 \ad) = —Q¢ a3 ) az \ad =-Q¢ a3) Wi — (34% + 2p7 )Wk, (A20)
(A5) — (A + Apf — pp)wh,, +3A° — A'ph =0,
1 - S
wi, == (342 4 2p? :I:A\/A2—|—16p2). A21
where each coefficient matric€ are given by F=72 < T T (Az1)
B . w?, . w% - are given as the solutions of Eq§._(A19) and
p;  —A? idp, (AZ1), respectively. Of course, we can get the explicit fafm
04 = -A* p2 —idp.|, (A6)  them, but they are quite complicated. Note that EOMdbr
—iAp, iAp, 2A? decouples from other components to be Lamé’s equation.
2 Q2 942 In summary, the coefficient matric€s hold following re-
0% (pz - g ~2> (A7)  lations,
24 p;+ A
) < A2 idp "8) 0? = diag (23,92) (forall p.. pr), (A22)
Q5 = 7 2 Z~2) A8 .
—iAp, p; +A 02— diag (9%,9) (pr=0) (A23)
1 | diag (93, 9%)  (p-=0)°
Their eigenvalues are given by @02 ( )
diag pr =0
02 =1 . (A24)
why = pl — A%, (A9) {dlag (QQD, %) (p:=0)
1
Wiy = (pz £ 324\ fpt 4 Gp2de+ A4> . (AL0)
2 Appendix B: Instability boundaries of Lam &’s equation
why =p? + 342, (A12) | |
sz2 _ pﬁ . AQ’ (A12) 1. Multiple-scale analysis
Wi = L (pz +2A% £\ /pt + 4p2A2) (A13) The instability boundaries of Lamé’s equation are calcu-
2 lable in perturbative way even when the closed form solu-

tions are not available. The method discussed here is called
wherew?,, ... w? stand for the eigenvalues 6f. We use  multiple-scale analysis which is a kind of singular perasrb
the explicit form of them in order to calculate the instabil- tion [34]. We consider following equation with dimensiosde
ity bands of single component Hill's equations. Note thatparameten, e.
w3, ws, andw?, correspond to Lamé’s equations which are . )
the special case of Hill's equation. f+ (A +en?(t:k)) f=0. (B1)
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If ¢ < 1, we can treat “external force term” as a perturba-In contrast to the naive perturbation theory, the leadirtgor
tion. Whenk = 0, Lamé’s equation comes down to Math- solution hasr dependence.fy = A(7)exp (imnt/2K) +

ieu’s equation. Lamé’s equation with= 1/+/2 appears in

scalar¢*-theory and Yang-Mills theory. In this section, we

perform the multiple-scale analysis for arbitrdryHereafter,
we use abbreviations aK; = K(k), K’ = K(v/1 — k?) and

E = E(k). E(k) is a complete elliptic integral of the second

kind.

By substituting the Fourier expansion for the elliptic func

tion, Eq. [B1) becomes

<c+—Zb c%—t)f_(), (B2)

eb

c=A+ k; (B3)

Here we use following formula,

E m m7r
k> =k —1+= —  cos—u.
enu = + + Z K? smhmﬂ'K’/K K
‘\,_/
b() bm

(B4)

We can perform multiple-scale analysis parallel to Matlsieu

equation using Fourier expansion of elliptic function. sEir
we simply expand asf = fo +¢f1 + ... in order to search
for the starting points of instability boundaries. The eipra
of ordere becomes

fitceh
bm, :
= -4 Z 2k2 z\/_ ( immt/K + e—zmﬂt/K) +cc.

(BS)

c.c. . The equation aP(e) is also modified as follows,

2 s
e+ (5x) 4

% .mm dA .mm
:_<qA+§§A Kci)“p@ﬁ?)
) (n—m/2)x
> gipvenp (12T,

m#n
(n+m/2)m
‘Zﬁﬁe(—ﬁr—

There is secular divergence due to the first term of the right
hand side of Eq[{B10). Thanks to the slow variable depen-
dence ofA(7), we find the “renormalization equation” so as
to remove the secular divergence, namelyr) must satisfy
the following relation,

) +c.c.. (B10)

b, .mm dA
A4+ —A” .
A+ —5 272 +1 s =0
We can solve this equation by putting= B + iC, then we

get

(B11)

(B12)

K |2
B(7) = const.x exp (i— 4_;;1 _ C%> .

Thus, we find that ifc;| < b,,,/2k? the solution is unstable.
This gives the instability boundaries in the accuracy¢é),
™m

c= (E)Q +
2K 2k2K2sinhmnK'/K

Now it is clear that the instability boundaries are calcidalp
to arbitrary order ot in a systematic way. Here we note the
explicit form of instability boundaries up to the ord®xe?)

2

e+---. (B13)

If resonance occurs, the solution will be strongly ampliﬁedforthe sake of completeness;

and unstable. The conditions for the resonance are given by

m? =1,4,9,.... (B6)

(57)
c=|—
2K
This condition gives the starting point of the instabilityund-
aries. Therefore, it is convenient to expanas,

_ (mw>2+ n
c= oK €C1 RN

and substitute it to Eq[_(B3),

P (o S ) o

(B8)

(B7)

Now we introduce a slow variable= et and assume thdtis

a function oft andr. This is the main idea of multiple-scale

analysis. We expanf as,

f:fO(th)+€fl(th)+"" (Bg)

mm 2
A= (5) (B14)
n 1 1 E " 2 m
2 2K 2k2K2sinhmrK' /K | ©
Bz (m) , 3
+ 4k4K2 € +O(E )7
- 1
B = - B15
=(m) Z sinhnr K’/ K (B15)
n=1, (n#m)
« 1 n 1
sinh(n — m)nK'/K Ta—m sinhnrK'/K
For the cas& = 1/v/2 andm = 1, we get
Ay~ 0.72 — 0.21e, (B16)
A~ 0.72 — 0.71e. (B17)
For the casen = 2,
Ay =~ 2.87 — 0.44e, (B18)
A~ 2.87 — 0.48¢ — 0.04€2. (B19)



FIG. 6: (In)stability boundaries of Lamé’s equation. Thedulus

is k = 1/+/2. Solutions are unstable jtr M| > 2. The red dot-
ted lines are determined instability boundaries in a basKauet

theory which are characterized byr M| = 2. The gray solid lines
are given by perturbative calculation (multiple-scalelgsia) which

is valid when0 < e < 1.
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2. Accuracy of multiple-scale analysis

In this subsection, we check the accuracy of the multiple-
scale analysis for Lamé’s equation for= 1/v/2. Figure[®
shows the contour map ¢fr M| as a function ot, A where
M is a monodromy matrix of Lamé’s equatiohtr M| > 2
means unstable regiohtr M | is calculated based on Floquet
analysis. Red dotted lines are contour lines characteliyzed
| tr M| = 2 and givetrue instability boundaries. The bound-
ary lines given by the multiple-scale analysis are plottét w
gray solid lines.

The results of the multiple-scale analysis are in good agree
ment with the numerically determined boundaries whes
small enough. Let us concentrate o= +1, 3 cases, which
are related to Yang-Mills dynamics. Fer= 1, the multiple-
scale analysis well reproduces the true boundariesc FoB,
the perturbative approach begins to break down. According
to Fig.[1, Lamé’s equation with = 3, Eq. [22), has only
one continuous unstable band while the multiple-scaleyanal
sis indicates that there is an unstable band arourd0. For
e = —1, the extrapolated boundaries seem to have good accu-
racy for the sub-dominant ban@.91 < A < 1.42) although
e < 0 region is out of the validity range of the multiple-scale
analysis.
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