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We examine the Brown-Rho scaling for meson masses in the strong coupling limit of
lattice QCD with one species of staggered fermion. Analytical expression of meson masses
is derived at finite temperature and chemical potential. We find that meson masses are

approximately proportional to the equilibrium value of the chiral condensate, which
evolves as a function of temperature and chemical potential.
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1. Introduction

The origin of masses has been one of the major driving forces in physics. For hadrons,
a large part of their masses are generated by the chiral condensate. Since the chiral
condensate may vary significantly in hot and/or dense matter, hadron masses would
be also modified. Brown and Rho conjectured a scaling behavior of hadron masses
in dense medium,1

m∗
σ/mσ ≈ m∗

N/mN ≈ m∗
ρ/mρ ≈ m∗

ω/mω ≈ f∗
π/fπ . (1)

This scaling law (referred to as the Brown-Rho scaling) suggests that the partial
restoration of the chiral symmetry can be experimentally accessible by measuring
in-medium hadron masses, and triggered many later theoretical and experimental
works. Theoretically, a similar behavior is also found in the NJL model2 and in
the QCD sum rule.3 Experimentally, enhancement of dileptons is observed below
the ρ and ω meson masses in heavy-ion collisions at SPS4 and RHIC5 and in pA

reactions.6 The interpretation of these enhancements is still under debate, then
it is important to examine the Brown-Rho scaling in QCD. In the lattice Monte-
Carlo (MC) simulations, it is possible to measure hadron masses quantitatively in
vacuum and at finite temperature, but it is not easy to perform MC simulations
at high densities because of the sign problem. Furthermore, MC simulations with
small quark masses are expensive.
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In this work, we investigate meson masses in the strong coupling limit of lattice
QCD (SCL-LQCD) at finite temperature and density.7 In SCL-LQCD combined
with the mean field approximation, it is possible to obtain analytical expressions of
the effective potential at finite temperature (T ) and quark chemical potential (µ).8,9

Hadron masses are studied in SCL-LQCD at zero temperature,10,11 but not at finite
temperatures. We find that the Brown-Rho scaling for meson masses approximately
holds at finite T and µ in SCL-LQCD with one species of staggered Fermion in the
leading order of the 1/d expansion.

2. Meson masses in the strong coupling limit lattice QCD

In SCL (g → ∞), we can ignore pure gluonic action proportional to 1/g2, and
obtain the following partition function after integrating spatial link variables in the
leading order of the 1/d expansion,8,9

Z =
∫

D[χ, χ̄, U0] e
1
2

P

x,y M(x)VM (x,y)M(y)−S
(t)
F −m0

P

x χ̄(x)χ(x) , (2)

S
(t)
F =

1
2

∑
x,n

[
eµχ̄(x, n)U0(x)χ(x, n + 1) − e−µχ̄(x, n + 1)U†

0 (x)χ(x, n)
]

≡ 1
2

∑
x,n,m

χ̄a(x, n)V (t)
na,mb(x)χb(x,m) , (3)

where the mesonic composite and their propagators are defined as M(x) =
χ̄a(x)χa(x) and VM (x, y) =

∑d
j=1(δy,x+ĵ + δy,x−ĵ)/4Nc, and d denotes the spa-

tial dimension. We introduce a mesonic auxiliary field (σ) through the Hubbard-
Stratonovich transformation, then the action is separated into terms containing
quarks and time-like link variables on the same spatial points, and it becomes pos-
sible to perform the integral over quark and time-like link variables. The effective
action for σ is obtained as,

S[σ] =
1
2

∑
x,y

σ(x)V −1
M (x, y)σ(y) +

1
T

∑
x

Veff(x) (4)

=
Ld

T
Feff(σ̄) +

1
2

∑
x,y

δσ(x)G−1
σ (x, y)δσ(y) , (5)

where N = 1/T and L stand for the temporal and spatial lattice sizes.
The equilibrium value σ̄ is determined by the effective potential minimum,

∂Feff/∂σ̄ = 0. In order to obtain the inverse propagator G−1
σ , we need to know

the interaction term, Veff(x), as a functional of σ(x, n). Fäldt and Petersson showed
that Veff is obtained as a function of XN [σ], which is a functional of σn = σ(x, n) 9,

e−Veff/T =
∫

DU0 Det(NNc)
[
V

(t)
na,mb + 2(m0 + σn)δnm

]
=

∫
dU0 Det(Nc)

[
XN [σ] ⊗ 1c + e−µ/T U†

0 + (−1)Neµ/T U0

]
, (6)
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where Det(n) denotes the n × n determinant, and the temporal gauge U0 =
diag(eiθ1 , · · · , eiθNc ) is adopted in the second line. XN [σ] is given as,

XN =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

I1 eµ 0 · · · e−µ

−e−µ I2 eµ 0
0 −e−µ I3 0
...

. . .
IN−1 eµ

−eµ 0 0 · · · −e−µ IN

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
−

[
e−µ/T + (−1)Neµ/T

]
. (7)

where Ik = 2(σk + m0). Since XN is expressed in an explicit determinant form, its
derivatives by σn are also given in the determinant of smaller matrices. In obtaining
the meson propagator, it is enough to evaluate the U0 integral and determinants in
equilibrium,8,9 and these are given as follows,

XN = eE/T + (−1)Ne−E/T , (8)

Veff = −T log
[
2 cosh(Ncµ/T ) +

sinh[(Nc + 1)E/T ]
sinh[E/T ]

]
, (9)

∂2Veff

∂σn∂σn+k

∣∣∣∣
σ=σ̄

=

dVeff

dXN

∂2XN

∂σn∂σn+k
+

d2Veff

dX2
N

1
N2

[
dX

(0)
N

dσ̄

]2


σ=σ̄

, (10)

∂2XN

∂σn∂σn+k

∣∣∣∣
σ=σ̄

=
2

cosh2 E

[
cosh NE − eiπk cosh[(N − 2k)E]

]
, (11)

where E = arcsinh [σ̄+m0] denotes the one-dimensional quark energy. By requiring
null average fluctuation,

∑
k δσk = 0, we ignore those terms independent from k

in the derivative of Veff . The Fourier transform of the inverse propagator, G̃−1
σ ≡

F.T.(G−1
σ ), is then given as,

G̃−1
σ (k, ω) =

2Nc

κ(k)
− ∂Veff(σ̄, T, µ)

∂σ̄

2 sinh E(σ̄)
cos ω + cosh 2E(σ̄)

, (12)

where κ(k) =
∑

j cos kj .
The meson propagator G̃σ depends on T and µ as well as on σ̄ via the inter-

action term Veff(σ̄, T, µ). However, the equilibrium condition ∂Feff/∂σ̄ = 0 with
Feff = Ncσ̄

2/d + Veff reads ∂Veff/∂σ̄ = −2Ncσ̄/d, and removes the explicit T and µ

dependence,

G̃−1
σ (k, ω) =

2Nc

κ(k)
+

2Ncσ̄

d

2 sinh E(σ̄)
cos ω + cosh 2E(σ̄)

. (13)

As a result, the meson propagator depends on T and µ only through the equilibrium
value of the chiral condensate, σ̄(T, µ).

Meson masses are obtained as the pole energy ω = iM + δπ of the propagator at
zero momentum, kj = δπ, where δπ = 0 or π.11 This appears from the taste degrees



March 4, 2008 0:7 WSPC/INSTRUCTION FILE Chiral07-Ohnishi

4 A. Ohnishi, N. Kawamoto, K. Miura

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

Zero Finite Exp.

M
as

s (
M

eV
)

�

�

h1�

 0

 1

 2

 3

 4

 5

 0  1  2  3

a 
M

a �

Z.T.F.T.

SCL-Z.T.
SCL-F.T.

Fig. 1. Meson mass spectrum in vacuum (left) and meson masses as functions of σ (right) in the
zero temperature (Z.T.) and finite temperature (F.T.) treatment in the strong coupling limit of
lattice QCD.

of freedom. With the choice of ω = iM + π, the masses are found to be

M = 2arcsinh

√
(σ̄ + m0)

(
κ + d

d
σ̄ + m0

)
, (14)

where κ = −d,−d + 2, . . . , d.
In the chiral limit (m0 = 0), we always have a massless boson for κ = −d,

as a consequence of the chiral symmetry in the present effective potential. For a
small current quark mass, we find that M(κ = −d) ≈ 2

√
σ̄m0, which may be

regarded as the PCAC relation. Thus we regard the mode κ = −d as the pion. We
tentatively assign κ = −1 corresponds to ρ meson,11 then we can fix the physical
scale, a−1 = 497 MeV and m0 = 9.5 MeV by fitting π and ρ meson masses in
vacuum. With these parameters and the present assignment, M(κ = 1, 3) seems to
correspond to φ and h1 mesons as shown in the left panel of Fig. 1. Contribution
from the chiral condensate σ̄ to meson masses (except for π) is found to be much
larger than that from the current quark mass m0 in vacuum, where σ̄vac ∼ a−1.

In the right panel of Fig. 1, we show meson masses as functions of σ̄. In the
range σ̄ ≤ σ̄vac, meson masses with κ = −1, 1, 3 are approximately proportional to
σ̄. In the present finite temperature (F.T.) treatment, σ̄ evolves as a function of
temperature and density. As a result, meson masses are also modified in hot and/or
dense matter, as shown in Fig. 2. These results should be compared with those in
the zero temperature (Z.T.) treatment,11

cosh M = 2(σ̄ + m0)2 + κ . (15)

In vacuum, these meson masses explain observed the observed mass spectrum, but
there is no (T, µ) dependence.

3. Summary and Discussion

In this work, we have examined the Brown-Rho scaling for meson masses in the
strong coupling limit of lattice QCD with one species of staggered Fermion at finite
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Fig. 2. Temperature (left) and chemical potential (right) dependence of meson masses.

temperature and chemical potential. Meson masses except for π are found to be
approximately proportional to the equilibrium value of the chiral condensate, σ̄.
Since the condensate mode (ω,k) = (0,0) corresponds to the chiral partner of π,
we may assume that σ̄ is proportional to the pion decay constant in medium, f∗

π .
Under this assumption, we may conclude that the Brown-Rho scaling would hold
in the strong coupling limit of QCD.

There are many more things to be clarified including the meson assignment as
pointed out in the symposium, pion mass behavior around the chiral transition
which is considered to grow in medium,2 meson masses with the choice of ω = iM ,
too high Tc in SCL,12 and negative eigen values in VM .13
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