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Abstract

Collective flows in heavy-ion collisions from SIS (1 A GeV), AGS (2-11 A GeV) to SPS (158 A GeV)
energies are investigated in a transport model with mean-field. Calculated results with momentum
dependent mean-field qualitatively reproduce the experimental data of sideward, directed, and elliptic
flows in this incident energy range.

1 Introduction

Determining the nuclear equation of state (EOS) under various conditions has been one of the largest
motivations of nuclear physics in these decades [1]. At around the saturation density, EOS gives the
bulk properties of nuclei such as the binding energy and the radius. EOS of asymmetric nuclear matter
(N À Z) is crucial in understanding the compositions in neutron stars, and it may be probed through
the study of neutron rich nuclei. At high densities, hadrons with strangeness such as hyperons and
kaons may emerge, and the interactions of these particles in nuclear matter has becomes clearer in recent
strangeness nuclear physics. In high-energy heavy-ion collisions, where nuclear matter in a wide of range of
temperatures and densities are probed, many ideas on EOS and phases have been examined. For example,
the gas of deconfined quarks and gluons (QGP) seems to be created in recent RHIC experiments.

Compared to hot baryon-free nuclear matter, for which the first principle lattice QCD simulations are
possible [2], roles of experimental information and related phenomenological studies are more important
for the study of nuclear matter at high baryon densities. In 1980’s, the existence of strong collective
flow in heavy-ion collisions was suggested in hydrodynamics [3, 4], and it was examined in experiments
at Bevalac [5]. Collective sideward flows are generated in the early stage of collisions by the repulsive
nucleon potential in nuclear matter, then the observed strong collective flows were believed to signal
very large pressure at high baryon densities, i.e. hard EOS [1, 6]. At high incident energies, however,
the real part of the nucleon-nucleus potential is already repulsive at the normal density, then the role
of this momentum dependence of nuclear potential on the collective flows were extensively studied from
around 1990 [7, 8, 9]. In order to distinguish the momentum and density dependence, we need to invoke
heavy-ion collision data in a wide incident energy range. We have now systematic collective flow data
at various incident energies; LBNL-Bevalac [12, 13, 14], GSI-SIS [15, 16], BNL-AGS [17, 18, 19, 20],
CERN-SPS [21, 22, 23], and BNL-RHIC.

Collective flow data obtained at AGS energies (2 − 11A GeV) show a good landmark to determine
EOS. In order to explain all of the radial, sideward, and elliptic flows at AGS energies, it is necessary
to take care of the saturating momentum dependence of the mean-field and increasing resonance and
string degrees of freedom [24]. More recently, Danielewicz et al. have discussed EOS with these data by
Boltzmann transport based mean-field model [9, 10, 11], showing that while softer EOS (K ∼ 167 MeV)
is preferred at low incident energies, we need stiffer EOS (K ∼ 300 MeV) at higher AGS energies. Finally,
they have concluded that the allowed pressure range as a function of baryon density (ρB = (2−4.5)ρ0) is
constraint by experiments. While their analysis is systematic and extensive, it would be still premature
to obtain the final conclusion. For sideward flow, results with RBUU [24] give a better description in
a relativistic mean-field with a momentum cut off for the meson-baryon coupling. In addition, we still
have a large ambiguity in the mean-field for hadrons other than nucleons. In order to reduce these
ambiguities and to pin down the EOS more precisely, recently measured flow data at lower SPS energies
(20− 80A GeV) would be helpful, because the highest baryon density is expected be reached at around
Einc ∼ 20− 40A GeV and the mean-field effects on collective flows have not been seriously investigated
at this energy regime.

In this work, we investigate collective flows from 1 A GeV to 160 A GeV by using a hadronic cascade
model (JAM) [25] combined with a covariant prescription of mean-field (RQMD/S) [26].



2 Model of EOS Study in High-Energy Heavy-Ion Collisions

Heavy-ion collision is a dynamical process of a system in which the temperature and density are not
uniform and the equilibrium is not necessarily reached. Then we need dynamical models to describe
collisions in order to extract static properties of nuclear matter under equilibrium. Hydrodynamical
description is the most direct way to connect the EOS and dynamics. Actually, hydrodynamics has
succeeded at RHIC, where the number of produced particles is so large that local equilibrium is easily
achieved. However the condition of local equilibrium may not be satisfied up to SPS energies, then non-
equilibrium dynamics is required to obtain the EOS of dense nuclear matter. In this work, we apply a
combined framework of hadron-string cascade JAM [25], and covariant constraint Hamiltonian dynamics
RQMD/S [26].

Hadron-string cascade is the main source of thermalization and particle production up to SPS energies.
In the energy range of Einc = 1 − 160A GeV, main particle production mechanism in hadron-hadron
collisions evolves from resonance production to string formation. At higher energies, partonic interaction
(jet production) becomes more important, and the jet production cross section reaches around 20 % of
the total cross section of pp at RHIC [27].

In JAM [25], all of the above particle production mechanisms are included, then the applicable incident
energy range is expected to be wide. Inelastic hadron-hadron collisions produce resonances at low energies.
We explicitly include all established hadronic states with masses up to around 2 GeV with explicit isospin
states as well as their antiparticles, which are made to propagate in space-time. At higher energies (√

s & 4 GeV in BB collisions,
√

s & 3 GeV in MB collisions, and
√

s & 2 GeV in MM collisions),
color strings are formed and they decay into hadrons after their formation time (τ ∼ 1 fm/c) according
to the Lund string model PYTHIA [32]. Hadrons which have original constituent quarks can scatter
with other hadrons assuming the additive quark cross section within a formation time. This simulates
string-hadron collisions which is known to be important at SPS energies. At high energies (

√
s & 10

GeV), multiple mini-jet production is also included in the same way as the HIJING model [27] in which
jet cross section and the number of jet are calculated using an eikonal formalism for perturbative QCD.
Hard parton-parton scattering with initial and final state radiation are simulated using PYTHIA [32].

While the particle production yield and momentum distribution are reasonably well reproduced in
cascade models, it is necessary to include mean-field effects to explain collective flow data. In order to
describe the flow data in a wide energy range, the mean-field should have the momentum dependence as
well as the density dependence. We adopt here a simple Skyrme type density dependent mean-field in
the zero-range approximation, and a Lorentzian type momentum dependent mean-field which simulates
the exchange term (Fock term) of the Yukawa potential as follows,

U(r,p) = α

(
ρ(r)
ρ0

)
+ β

(
ρ(r)
ρ0

)γ

+
2∑

k=1

C
(k)
ex

ρ0

∫
dp′

f(r,p′)
1 + [(p− p′)/µk]2

. (1)

This mean-field potential leads to the following total potential energy,

V =
∫

dr

[
αρ2(r)

2ρ0
+

βργ+1(r)
(1 + γ)ργ

0

]
+

2∑

k=1

C
(k)
ex

2ρ0

∫
drdpdp′

f(r,p)f(r,p′)
1 + [(p− p′)/µk]2

. (2)

f(r,p) is the phase space distribution function whose integral over p is normalized to the density ρ(r).
At zero temperature and for uniform density, we can carry out the integral in Eqs. (1) and (2) [7].

By choosing parameters α, β,C
(k)
ex , and µk(k = 1, 2) appropriately, we can fit the saturation density

ρ0 and the binding energy per nucleon as well as the real part of the global optical potential of Hama et
al. [41], for a given value of γ. The parameter sets in Table 1 fulfill the saturation properties [33, 34]. The
abbreviation “Sky” is the momentum independent parameter sets, and “Sky+mom” contains both density
and momentum dependent parts. For momentum dependence, we adopt the parameters in Ref. [38] with
some modification. For details, one can refer to Refs. [1, 35, 36, 37, 38].

We have introduced the above mean-field into JAM [25] by means of RQMD/S [26] frame work. The
Relativistic Quantum Molecular Dynamics (RQMD) is a constraint Hamiltonian dynamics, in which we
can treat the mean-field in a covariant way. While covariant equation of motion should have 8N phase
space variables, (qµ, pµ), the number of actual dynamical variables is 6N , (r,p). Then we need 2N
constraints [39]. In RQMD, we set N on mass shell constraints and N time-fixation constraints. We
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Figure 1: Left: Density dependence of EOS in Eq. (2). Two-potentials are shown, which is momentum–
independent “Sky” [34] and -dependent “Sky+mom’ . We can see they saturate at ρ = ρ0. Right: Momen-
tum dependence of potential in Eq.(1). Parameter sets of “Sky+mom” are described, also momentum-
independent sets “Sky” are shown. It reproduces the form of real part of optical potential taken from
Hama [41] fitted the range of 1 . Einc . 1000 MeV with assuming uniform nuclear matter.

Type α β γ C
(1)
ex C

(2)
ex µ1 µ2 K

(MeV) (MeV) (MeV) (MeV) (fm−1) (fm−1) (MeV)
Sky (H) [33] -124 70.5 2 — — — — 380
Sky (S) [33] -356 303 7/6 — — — — 200
Sky+mom(MH) -33 110 5/3 -277 663 2.35 0.4 448
Sky+mom(MS) -268 345 7/6 -277 663 2.35 0.4 314

Table 1: Parameter set of density-dependent and momentum-independent/dependent potential.

follow the work by Maruyama et al. (RQMD/S) [26] for time fixation constraints, which is much simpler
and more practical than the original RQMD time fixation [29, 30, 31].

φi ≡




Hi ≡ p2
i −m2

i c
2 − 2miVi ≈ 0 (i = 1, . . . , N) ,

χi−N ≡ â · (qi−N − qN ) ≈ 0 (i = N + 1, . . . , 2N − 1) ,
χN ≡ â · qN − τ ≈ 0 (i = 2N) .

(3)

The symbol “≈” is the weak equality initiated by Dirac [40]. Here, â is 4-component vector corresponding
to (1,0) at the reference frame, and qi represents the time-space coordinates of the i-th particle.

By requiring that 2N constants are kept in time, Lagrange multipliers ui are obtained, then we get
the Hamiltonian and the equation of motion as

H =
2N−1∑

i=1

uiφi ≈
N∑

j=1

1
2p0

j

(p2
j −m2

j − 2mjVj) , (4)

dri
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≈ −∂H

∂pi
=
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p0
i
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mj

p0
j

∂Vj

∂pi
,

dpi

dτ
≈ ∂H

∂ri
= −

N∑

j=1

mj

p0
j

∂Vj

∂ri
. (5)

The sum of the potential Vi becomes the total potential V , which is approximated in the actual calculation
as

V =
∑

i

Vi '
∑

i

[(
α〈ρi〉
2ρ0

+
β〈ρi〉γ

(1 + γ)ργ
0

)
+

2∑

k=1

C
(k)
ex

2ρ0

∑

j( 6=i)

ρij

1 + [p̃ij/µk]2

]
, (6)

where 〈ρi〉 is the density averaged over the Gaussian packet of the i-th particle, and ρij is the density
overlap of the i-th and j-th packets. In evaluating the potential, we have used the covariant squared
distance and relative momentum,

r̃2
ij = −q2

ij + (qij · Pij)2/P 2
ij , p̃2

ij = −p2
ij + (pij · Pij)2/P 2

ij , (7)



where qµ
ij = qi − qj , pµ

ij = pi − pj , Pµ
ij = pi + pj . These variables, r̃2

ij and p̃2
ij , represent the (squared)

distance and relative momentum in the CM frame of the two particles.
We have combined the two important features described above, hadron-string cascade and mean-

field, based on the cascade model, JAM. The effects of the mean-field in high-energy heavy-ion collisions
are visible but not very large in the single particle spectra, as the rapidity distribution dN/dy or the
transverse mass distribution d2N/mT dmT dy. In the next section, we demonstrate that the mean-field
effects are essential in anisotropic collective flows.

3 Collective Flows from SIS to SPS energies

When two heavy nuclei collide at high energies, copious hadrons are produced in the multiple scattering
of hadrons. In the first chance and in the proceeding several collisions, hadrons are formed and propagate
in dense matter, whose property is expected to affect the final hadron spectra. Especially, when the
impact parameter is finite, pressure gradient is anisotropic in the initial stage of collision and it generates
the particle anisotropy, called anisotropic flow.
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Figure 2: Sideward flow 〈px〉 of protons in AGS energy heavy-ion (Au+Au) collisions. We choose semi-
central collisions 4 < b < 8 fm. Dotted, dashed and solid lines show the results of Cascade, Cascade with
”Sky”(H) mean-field and Cascade with ”Sky+mom”(MH) mean-field, respectively. We see that “Sky
+ mom” gives a good description of experimental data for incident energies of 2 ≤ Einc ≤ 11 A GeV.
Experimental data are taken from Bevalac [13], AGS-E877 [17] and AGS-E895 [19].

Up to now, several kinds of collective flows are proposed as a probe of high density matter. The first
one is called sideward flow, which is defined as the slope of the mean-value of px (in the direction of
impact parameter) as a function of the rapidity,

F =
d〈px〉

d(y/yproj)

∣∣∣∣
y=yc.m.

. (8)

The sideward flow is generated by the participant-spectator interaction. Nucleons in the projectile
nucleus feels repulsive interaction at high energies from the target nucleus during the contact time of
projectile and target. This repulsion pushes nucleons out in the sideward direction giving positive sideward
flow if the contact time is long enough. When the incident energy is very high, contact time becomes
short mainly due to the Lorentz contraction, and the sideward flow decreases.



Figure 2 shows the incident energy dependence of sideward flow from SIS to AGS energies. Data
tell us that the sideward flow first increases as a function of the incident energy, reaches maximum at
around Einc ∼ 2A GeV, and decreases above 2A GeV. Calculated results with Cascade (JAM without
mean-field) do not reproduce this incident energy dependence. In Fig. 2, we find that cascade results in
similar 〈px〉 behavior, giving small values of F and small incident energy dependence of the sideward flow.
When repulsive mean-field effects are taken into account (JAM-RQMD/S), the sideward flow becomes
stronger and has clear energy dependence. At the incident energies of 1− 2A GeV, contact time is long
enough and there is a significant effects of the mean-field on F . At higher incident energies, the mean-
field effects become smaller, and the difference is almost negligible at the top AGS energy (11 A GeV)
for F . However, we still find some differences in the 〈px〉 values at projectile and target rapidity region
(y/yproj ' ±1), and the momentum dependent mean-field improves the description.
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Figure 3: Directed flow v1 of protons for SPS energy heavy-ion (Pb+Pb) collisions. Dotted, solid, and
dot-dashed lines show the results of Cascade, Cascade with ”Sky+mom”(MH) mean-field and Cascade
with ”Sky+mom”(MS) mean-field, respectively. Experimental data are taken from SPS-NA49 [23].

At SPS energies (Einc = 40, 158A GeV), the directed flow (v1) is measured instead of 〈px〉 as a function
of the rapidity. Here vn is defined as the n-th Fourier coefficient,

d3N

pT dpT dydφ
=

d2N

2πpT dpT dy
×

(
1 +

∑
n

2vn(pT , y) cos nφ

)
, (9)

v1 = 〈cos φ〉 =
〈

px

pT

〉
, v2 = 〈cos 2φ〉 =

〈
p2

x − p2
y

p2
T

〉
, . . . (10)

where the azimuthal angle φ is measured from the reaction plane. These Fourier coefficients are easier to
measure since no particle identification is necessary. These collective flows are reviewed in Ref. [28].

In Fig. 3, we compare the calculated results with the data of Pb+Pb collisions at Einc = 40 and 158
A GeV [23]. The values of v1 data are of the order of a few percents, which are smaller than the values
expected at AGS energies. In addition, the rapidity dependence of data is much more flatter than that
in the Cascade results. Contrary to 〈px〉 at AGS energies, mean-field suppresses v1 at SPS, which is the
direction to be closer to the data behavior. This tendency may be understood by the time scale. Since
the projectile and target pass through in a very short time due to the large Lorentz contraction factor at
SPS, the pressure effects would be in the reverse direction.

While the mean-field effects in v1 are still visible even at SPS energies, the short participant-spectator
interaction time makes the collective sideward flow signal smaller. Thus at SPS and RHIC, the next
Fourier coefficient, called as the elliptic flow (v2), has been discussed more extensively. The participants
form an almond-like shape in the transverse plane after the spectators go through, and actual participant
dynamics would emerge at mid-rapidities. If the participants are well thermalized, the pressure gradient
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Figure 4: Incident energy dependence of nucleon elliptic flow at mid-rapidities (−0.2 < y/yproj < 0.2)
in semi-central (4 < b < 8 fm) heavy-ion collisions from 1 A GeV to 160 A GeV. Dotted, dashed,
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with ”Sky+mom”(MH) mean-field and Cascade with ”Sky+mom”(MS) mean-field, respectively. The
experimental data are taken from LBL-EOS, AGS-E895, E877 [18] and SPS-NA49 [23].

is stronger in the x (shorter axis of the almond) direction, leading to the enhancement of in-plane particle
emission, i.e. positive v2. At lower energies (Einc . 4A GeV), we find squeezing (v2 < 0) of nucleons
during the contact of projectile and target rather than the pure participant expansion. The elliptic flow,
therefore, shows the strength of the repulsive interaction at lower energies and how much pressure is
constructed at higher energies.

In Fig. 4, we show the incident energy dependence of proton v2 at mid-rapidities. Experimental data
clearly show the evolution from squeezing to almond shaped participant dynamics. In Cascade, we cannot
explain strong squeezing effects at lower energies, and the calculated v2 values are generally larger than
data at all the incident energies investigated here. Momentum dependent mean-field, which is repulsive
in the energy range under consideration, pushes down the elliptic flow significantly. We can qualitatively
reproduce the incident energy dependence from SIS to SPS energies, except for the data at Einc = 40A
GeV. For the data at Einc = 40A GeV, the extracted v2 value strongly depends on the analysis; we
have adopted the value of the reaction plane analysis, but it becomes much larger if we adopt the value
extracted in particle correlation method [23]. Confirmation of data is necessary to examine the incident
energy dependence of v2, whether it is a monotonic function or has a dip at around Einc ∼ 40A GeV [23].

4 Summary

We have investigated collective flows in heavy-ion collisions from SIS (1 A GeV), AGS (2−11A GeV)
to SPS (158 A GeV) energies by using a combined framework of hadron-string cascade (JAM) [25] and
covariant constraint Hamiltonian dynamics (RQMD/S) [26]. In hadron-string cascade, various particle
production mechanisms are taken into account — production and decay of resonances and strings, and
jet production and its fragmentation, while partonic interaction has only a minor role up to SPS energies.
Momentum dependence of the mean-field is fitted to the real part of the Schrödinger equivalent global
optical potential of Hama et al. [41]. Saturation properties are fitted by introducing the density dependent
potential of Skyrme-type in the power series of ρ, U(ρ) = α(ρ/ρ0) + β(ρ/ρ0)γ . Calculated results of
Cascade, Cascade with momentum dependent mean-field, and Cascade with momentum independent
mean-field are compared with the data of sideward (〈px〉), directed (v1), and elliptic (v2) flows from SIS
to SPS energies. Generally, results with momentum dependent mean-field reasonably well explain the
trend of data. Specifically, we cannot reproduce strong enhancement of the sideward flow at around



Einc = 2A GeV, strong squeezing seen in v2 for Einc . 4A GeV, and suppression of v1 at Einc = 158A
GeV, without momentum dependent mean-field. The present analysis then extends the work by Sahu et
al. [24] and Danielewicz et al. [10] in the incident energy range, implying that our current knowledge —
hadron-string cascade in momentum dependent mean-field — is consistent with the observed collective
behavior in heavy-ion collisions.

There are still many problems to pin down the equation of state (EOS) of dense nuclear matter from
the heavy-ion data. First, we have considered the mean-field only for nucleons in this work, and the
mean-field for resonance hadrons and mesons such as ∆, Λ and kaons are ignored. This prescription
significantly reduces the density used in evaluating the mean-field at high energies, and it may lead to
the underestimate of the density dependent part of the mean-field effects. Since we already have the flow
data for Λ, π and kaons, it would be possible to extend the present work to include and to discuss the
mean-field effects for other hadrons than nucleons. Secondly, the functional form of the mean-field may
be problematic. When the momentum dependence is fitted in the Lorentzian form, the EOS necessarily
becomes relatively stiff, as shown in Table 1, in the Skyrme-type form. The small sensitivity on EOS
with momentum dependence appeared in this work may be suggesting that the probed EOS range is not
wide enough. Thirdly, more detailed theoretical analyses such as the impact parameter, pT , and particle
dependence of flows with higher simulation statistics would be desired. Works in these directions are in
progress.

This work is supported in part by the Ministry of Education, Science, Sports and Culture, Grand-in-
Aid for Scientific Research (C)(2), No. 15540243, 2003.
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