Universality of supernova γ-process

T. Hayakawaa,b, N. Iwamotoc, T. Kajinob,d, H. Umedad and K. Nomotod

a Kansai Photon Science Institute, Japan Atomic Energy Agency, Kizu, Kyoto 619-0215, Japan

b Nuclear Data Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan.

c Nuclear Data Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan.

d Department of Astronomy, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.

E-Mail: hayakawa.takehito@jaea.gp.jp

The scaling empirical law between p-nuclei and s-nuclei were found in the solar abundances and it indicated a novel concept of the universality of the supernova γ-process [1,2]. Using core-collapse supernova explosion models, we investigate the principle of the universality that the s/p abundance ratios produced by individual supernova γ-processes are almost constant over the wide region of atomic number. The universality originates from three mechanisms, the weak s-process in pre-supernovae, the independence of the s/p abundance ratios of the nuclear reactions, and the shift of the γ-process layers. Our calculations further suggest an extended universality that the s/p ratios in the γ-process layers are not only constant but also centered around a specific value of 3. The scaling is also a piece of evidence that the weak s-process occurs in massive stars before the supernova explosions.

References