Description of three-body scattering for astrophysics

Y. Kikuchia, T. Myob, M. Takashinac, K. Katōa and K. Ikedad

a Division of Physics, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
b Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki 567-0047, Japan
c Institute for Theoretical Physics (YITP), Kyoto 606-8502, Japan
d The Institute of Physical and Chemical Research (RIKEN), Wako 351-0198, Japan

E-Mail: yuma@nucl.sci.hokudai.ac.jp

The three-body reactions are key reactions in the astrophysics, for example, the triple-\(\alpha\) reaction for the \(^{12}\text{C}\) production reaction.\cite{1} In such reactions, the description of three-body scattering is an essential tool to analyze the physical quantities such as cross section and reaction rate. However, the three-body scattering problem is not fully understood in nuclear physics.

In this report, we introduce the simple description for three-body scattering. In our method, the resonant and continuum states are included within the complex scaling method (CSM), and the correlations of the subsystems are reproduced well.\cite{2}

References
\begin{enumerate}
\end{enumerate}