Decay spectroscopy experiments at the RIBF

S. Nishimura

RNC, RIKEN, Wako, Saitama 351-0198, Japan
E-Mail: nishimu@riken.jp

The astrophysical r-process is one of the major nucleosynthesis processes in the universe, producing roughly half of all elements heavier than iron. Understanding the features of the r-process requires knowledge of mass, life-times ($T_{1/2}$), isomeric states, level scheme, and neutron emission probabilities (P_n) of neutron-rich nuclei. Because of extremely low production yield of such r-process nuclei far from the stability, high precision decay spectroscopy experiment is essential by introducing high efficiency beta-counting system under extremely low production yield of r-process nuclei.

A second-generation of radioactive beam facility (RIBF)\footnote{Y. Yano, Nucl. Instr. and Meth. B 261 (2007) 1009.} has started providing unstable nuclei using high intensity 235U beam in 2007. First attempt for new isotope search has been performed and successfully demonstrates its identification capability of heavy isotope (125Pd, etc) beyond mass $A > 100$ by measuring B_ρ, Time-of-Flight (TOF), energy loss (dE), and total energy (E) of each particle with large acceptance beam separator (Big-RIPS)\footnote{T. Kubo, Nucl. Instr. and Meth. B 204 (2003) 97.}. While, the persistent efforts for preparation of decay spectroscopy experiments have been made to deduce the decay properties of neutron-rich nuclei efficiently.

Here, the scope of decay experiments will be discussed related to the astrophysical nucleosynthesis by introducing two different beta-counting systems, one for multi-layers of double-sided-silicon-strip-detectors (DSSSD), and another for a super-segmented scintillation detector (CAITEN) with a novel technique \footnote{S. Nishimura, et al., Nucl. Phys. A 718 (2003) 214c.} \footnote{S. Nishimura, et al., OMEG (2003) 304.}.

References