Cold \(r \)-Process in Supernovae

Shinya Wanajo

Department of Astronomy, School of Science, University of Tokyo, Bunkyo-ku, Tokyo, 113-8654, Japan

E-Mail: wanajo@astron.s.u-tokyo.ac.jp

The \(r \)-process in a low temperature environment is explored, in which the neutron emission by photodisintegration does not play a role (cold \(r \)-process). A semi-analytic neutrino-driven wind model is utilized for this purpose. The temperature in a supersonically expanding outflow can quickly drop to a few \(10^8 \) K, where the \((n, \gamma)-(\gamma, n)\) equilibrium is never achieved during the heavy \(r \)-nuclei synthesis. In addition, the neutron capture competes with the \(\beta \)-decay owing to the low matter density. Despite such non-standard physical conditions for the cold \(r \)-process, a solar-like \(r \)-process abundance curve can be reproduced. The cold \(r \)-process predicts, however, the low lead production compared to that expected in the traditional \(r \)-process conditions, which can be a possible explanation for the low lead abundances found in a couple of \(r \)-process-rich Galactic halo stars.

References