Nuclear structure of 8B studied by proton resonance scatterings on 7Be

H. Yamaguchia, Y. Wakabayashia, G. Amadioa, H. Fujikawaa, S. Kubonoa, T. Teranishib, J.J. Hec, A. Saitod, Y.K. Kwone, S. Kubonof, Y. Toganog, M. Niikuraa, N. Iwasah, S. Inafukuh and L.H. Khiemi

a Center for Nuclear Study, University of Tokyo
b Department of Physics, Kyushu University
c School of Physics, The University of Edinburgh
d Department of Physics, University of Tokyo
e Department of Physics, Chung-Ang University
f The Institute of Physical and Chemical Research (RIKEN)
g Department of Physics, Rikkyo University
h Department of Physics, Tohoku University
i Institute of Physics and Electronics, Vietnam Academy of Science and Technology

CRIB (CNS Radio-Isotope Beam separator) is a radio-isotope beam separator of Center for Nuclear Study, University of Tokyo. A low-energy 7Be beam, which is useful for nuclear astrophysical studies, can be produced at CRIB by the 7Li(p,n) reaction in inverse kinematics.

We have measured proton resonance scatterings on 7Be, using 7Be beam produced at CRIB. The energy level structure of 8B, revealed by this experiment, is especially of interest with the relation with the 7Be(p,γ)8B reaction. The determination of 7Be(p,γ)8B reaction rate at solar energy, which is directly related to the production rate of the solar 8B neutrino, is regarded as one of the most important topic in the nuclear astrophysics today. The low-lying excited states of 8B may affect the determination of the 7Be(p,γ)8B reaction rate. Not only the lowest excited state (at 0.77 MeV), but an unexpected wide negative parity state (2-) found to be at 3.5 MeV [1,2] may also play an important role. We aimed to have a clear knowledge of this 3.5 MeV state. We have also explored the totally unknown region, E > 3.5 MeV to discover new resonances.

References