Vorticity and spin polarization in heavy-ion collisions

Xu-Guang Huang
Fudan University, Shanghai

March 27th, 2019 @ Yukawa Institute for Theoretical Physics

Motivation of the talk

Quark-gluon plasma: "The most vortical fluid"

doi:10.1038/nature23004

Global Λ hyperon polarization in nuclear collisions

The STAR Collaboration*

See talk by Niida

Theory

Motivation of the talk

- But: discrepancies between theory and experiments
 - 1) longitudinal polarization vs ϕ

2) Transverse polarization vs ϕ

3) Vector meson spin alignment

Experiment Refs:

STAR Collaboration, arXiv:1805.04400

Niida, Quark matter 2018

C. Zhou, Quark matter 2018

B. Tu, Quark matter 2018

Motivation of the talk

- To resolve the discrepancies, from the theory side, we need to:
 - Understand the properties of fluid vorticity itself
 - Understand the magnetic field contribution, the resonance decays contribution,
 - Find other observables which are always helpful: spinalignment at central collisions, the chiral vorticity effects,
 - Understand how vorticity polarizes spin and how the spin polarization evolve: spin kinetic theory or spin hydrodynamics (See talk by Taya)

Vorticity in heavy-ion collisions

Fluid vorticity

$$\boldsymbol{\omega} = \nabla \times \boldsymbol{v}$$

Local angular velocity

Fluid vorticity

 Vortices: common phenomena in fluids across a very broad hierarchy of scales

Angular momentum in HIC

Angular momentum in HIC

Global angular momentum

Local vorticity

$$J_0 \sim \frac{Ab\sqrt{s}}{2} \sim 10^6 \hbar$$
 $\omega \sim ?$

(RHIC Au+Au 200 GeV, b=10 fm)

Velocity field in partonic model

To calculate the vorticity, we need to know the velocity

Definition of velocity field in HIJING or AMPT model

$$v_1^a(x) = \frac{1}{\sum_i \Phi(x,x_i)} \sum_i \frac{p_i^a}{p_i^0} \Phi(x,x_i) = \frac{J^a}{J^0} \sim \text{Particle flow velocity}$$

$$v_2^a(x) = \frac{\sum_i p_i^a \Phi(x,x_i)}{\sum_i [p_i^0 + (p_i^a)^2/p_i^0] \Phi(x,x_i)} = \frac{T^{0a}}{T^{00} + T^{aa}} \sim \text{Energy flow velocity}$$

$$v_2^a(x) = rac{\sum_i p_i^a \Phi(x, x_i)}{\sum_i [p_i^0 + (p_i^a)^2/p_i^0] \Phi(x, x_i)} = rac{T^{0a}}{T^{00} + T^{aa}} \sim ext{Energy flow velocity}$$

Smearing function Phi

$$\Phi_{G}(x, x_{i}) = \frac{K}{\tau_{0} \sqrt{2\pi\sigma_{\eta}^{2}} 2\pi\sigma_{r}^{2}} \exp\left[-\frac{(x - x_{i})^{2} + (y - y_{i})^{2}}{2\sigma_{r}^{2}} - \frac{(\eta - \eta_{i})^{2}}{2\sigma_{\eta}^{2}}\right]$$

Parameters are so chosen that with hydro, it is consistent with elliptic data (Pang-Wang-Wang 2012)

Velocity field in partonic model

To calculate the vorticity, we need to know the velocity

Definition of velocity field in HIJING or AMPT model

$$v_1^a(x) \,=\, \frac{1}{\sum_i \Phi(x,x_i)} \sum_i \frac{p_i^a}{p_i^0} \Phi(x,x_i) = \, \frac{J^a}{J^0} \quad \thicksim \text{ Particle flow velocity}$$

$$v_2^a(x) = \frac{\sum_i p_i^a \Phi(x, x_i)}{\sum_i [p_i^0 + (p_i^a)^2/p_i^0] \Phi(x, x_i)} = \frac{T^{0a}}{T^{00} + T^{aa}} \sim \text{Energy flow velocity}$$

Definition of vorticity field (for each definition of v)

$$\omega_1 = oldsymbol{
abla} imes v,$$
 ~ nonrelativistic definition

$$\omega_2^\mu = \epsilon^{\mu\nu\rho\sigma} u_\nu \partial_\rho u_\sigma \quad extbf{\sim relativistic definition}$$

$$\varpi_{\mu\nu}=\frac{1}{2}[\partial_{\nu}(u_{\mu}/T)-\partial_{\mu}(u_{\nu}/T)]$$
 ~ relativistic thermal vorticity

Vorticity by global AM

Vorticity in Au+Au@RHIC at b=10 fm is $10^{20}-10^{21}s^{-1}$

See also: Becattini etal 2015,2016; Jiang-Lin-Liao 2016; Pang-Petersen-Wang-Wang 2016; Xia-Li-Wang 2017,2018; Sun-Ko 2017;

Vorticity by global AM

Collision energy dependence

- •Consistent with the Lambda polarization result of STAR
- •With increasing energy, more AM carried by high-rapidity particles, midrapidity closer to Bjorken expansion
- •Indicates stronger vortical effect at lower energy (beam energy scan, NICA, FAIR, JPARC, HIAF)

Vorticity by global AM

Event-by-event azimuthal fluctuation

- •For small and very large b, fluctuation so strong that correlation with PP is lost
- Moderate b, Gaussian around pi/2
- •Suppress the correlation with the matter geometric plane

Vorticity due to expansion

Other sources of vorticity

1) Jet

2) Magnetic field

 $\frac{\vec{\omega}_{\perp} = (\omega^{x}, \omega^{y})}{\eta = 4.0} \underbrace{\begin{array}{c} \vec{\omega}_{\perp} = (\omega^{x}, \omega^{y}) \\ \eta = 4.0 \\ 0.01 \text{ [GeV]} \end{array}}_{-5} \underbrace{\begin{array}{c} \vec{\omega}_{\perp} = (\omega^{x}, \omega^{y}) \\ 0.01 \text{ [GeV]} \\ 0.5 \\ 0.00 \\ -0.5 \\ -1.0 \\ \end{array}}_{-1.0}$ Pang-Peterson-Wang-Wang 2016

Einstein-de-Haas effect

Main message:

1. Global AM induces strong vorticity in HICs

:
$$\omega \approx 10^{21} - 10^{22} \, s^{-1}$$

2. Inhomogeneous expansion: quadrupoles in both xy and xz planes

How the vorticity polarize spin?

Spin-vorticity coupling

Early consideration: Liang-Wang 2004; Voloshin 2004

$$H = H_0 - \boldsymbol{\omega} \cdot \boldsymbol{J} \qquad \longrightarrow \qquad \frac{dN}{d\boldsymbol{p}} \sim e^{-(H_0 - \boldsymbol{\omega} \cdot \boldsymbol{J})/T}$$

Possible magnetic-field contribution. A way to measure B?

$$H = H_0 - \boldsymbol{\omega} \cdot \boldsymbol{J} - \boldsymbol{m} \cdot \boldsymbol{B}$$

Spin-vorticity coupling

More careful examination: Becattini-Chandra-Grossi 2013; Fang-Pang-Wang 2016

$$S^{\mu}(x,p) = -\frac{s(s+1)}{6m}(1-n_F)\epsilon^{\mu\nu\rho\sigma}p_{\nu}\varpi_{\rho\sigma}(x) + O(\varpi)^2$$

where $n_F(p_0)$ is the Fermi-Dirac distribution function and $p_0 = \sqrt{p^2 + m^2}$

Rest frame of particle:
$$S^* = S - rac{m{p} \cdot S}{p_0(p_0 + m)} m{p}$$

Polarization in direction n:

$$P_n = \frac{1}{s} S^* \cdot n$$

Assumption used: thermal equilibrium. Is spin degree of freedom thermalized in HICs? Open question.

Hyperon polarization

Global spin polarization

- Mass ordering among $\Omega^-(sss)$, $\Xi^0(uss)$, and $\Lambda(uds)$.
- Magnetic moments μ_{Ω} : μ_{Ξ} : $\mu_{\Lambda}=3$: 2: 1. Test magnetic contribution.

D.X.Wei-W.T.Deng-XGH, 1810.00151

Hyperon polarization

• p_T , rapidity, and azimuthal dependence, theory vs expts.

- Theory consistent with experiments in p_T and rapidity dependence.
- Puzzle: opposite ϕ dependence in theory and experiment.

Transverse spin harmonic flow

How to test the local structure of vorticity?

Initial spatial anisotropy

Final momentum anisotropy

Harmonic decomposition of the transverse polarization

$$P_y(Y,\phi) = \frac{1}{2\pi} P_y(Y) \{1$$
$$+ 2\sum_{n=1}^{\infty} f_n \cos[n(\phi - \Phi_n)]\}$$

Longitudinal spin harmonic flow

• Longitudinal vortical quadrupole. Becatting

Initial spatial anisotropy

Final momentum anisotropy

Harmonic decomposition of the longitudinal polarization

$$P_z(Y,\phi) = \frac{P_z(Y)}{2\pi} \{1$$
$$+ 2\sum_{n=1}^{\infty} f_n \cos[n(\phi - \Psi_n)]\}$$

The sign problem

• Longitudinal sign problem:

• Transverse sign problem:

Data: STAR Collaboration

Calculation: Wei-Deng-XGH

2018

Spin alignment

- Vorticity can also polarize spin of vector mesons, e.g. φ
- Consider recombination $q + \overline{q} \rightarrow \phi$, the density matrix of q:

$$\rho^q = \frac{1}{2} \begin{pmatrix} 1 + P_q & 0\\ 0 & 1 - P_q \end{pmatrix}$$

• The density matrix of ϕ is obtained from $ho^q \otimes
ho^{\overline{q}}$ in basis of $|\uparrow\uparrow\rangle$, $|\uparrow\downarrow\rangle$ - $|\downarrow\uparrow\rangle$, and $(\downarrow\downarrow\downarrow|$

$$\rho^{V} = \begin{pmatrix} \frac{(1+P_q)(1+P_{\bar{q}})}{3+P_qP_{\bar{q}}} & 0 & 0\\ 0 & \frac{1-P_qP_{\bar{q}}}{3+P_qP_{\bar{q}}} & 0\\ 0 & 0 & \frac{(1-P_q)(1-P_{\bar{q}})}{3+P_qP_{\bar{q}}} \end{pmatrix}$$

• Suppose $P_q = P_{\overline{q}}$,

$$\rho_{00}^{\rho({\rm rec})} = \frac{1 - P_q^2}{3 + P_q^2} \qquad \qquad \text{Liang-Wang 2005}$$

Smaller than 1/3

• Ф decay via strong process, no parity violation, it is not easy to determine its spin polarization states, but

$$\frac{dN}{d(\cos\theta^*)} = N_0 \times \left[(1 - \rho_{00}) + (3\rho_{00} - 1)\cos^2\theta^* \right]$$

Puzzle: for most centrality, $ho_{00} > \frac{1}{2}$

Magnetic field contribution? **Fragmentation? Gluon contribution?**

• Φ decay via strong process, no parity violation, it is not easy to determine its spin polarization states, but

No significant energy dependence

Can be understood. As ρ_{00} depends on P_q^2

Xia-Li-Wang 2018

• Spin configuration for vector mesons:

$$\rho_{11}\sim |\uparrow\uparrow\rangle$$
 ($\uparrow\uparrow$ |, $\rho_{-1-1}\sim |\downarrow\downarrow\rangle$ ($\downarrow\downarrow$ |, $\rho_{00}\sim [|\uparrow\downarrow\rangle-|\downarrow\uparrow\rangle][(\uparrow\downarrow|-(\downarrow\uparrow|]$

Predictions for central collisions:

Noncentral collisions: Magnetic field?

$$\rho_{00}^{mag} = \frac{1 + P_y^2}{3 - P_y^2} > \frac{1}{3}$$

$$\rho_{00}^{vor} = \frac{1 - P_y^2 + P_x^2 + P_z^2}{3 + P^2}$$

Predictions for central collisions:

0.315

0.310

 p_T (GeV)

0.3

0.28

0.26

The 1st-order EP

The 2nd-order EP

STAR preliminary

p_T(GeV/c)

Noncentral collisions: Magnetic field?

$$\rho_{00}^{mag} = \frac{1 + P_y^2}{3 - P_y^2} > \frac{1}{3}$$

$$\rho_{00}^{vor} = \frac{1 - P_y^2 + P_x^2 + P_z^2}{3 + P^2}$$

Well testable! **Evidence of** circular vorticity

Summary

- Most vortical fluid created in HICs.
- Global polarization can be understood: vorticity induced by global AM
- Inhomogeneous expansion leads to quadrupolar vortical structure in transverse plane and reaction plane
- Sign problem in the azimuthal-angle dependence of both transverse and longitudinal polarizations
- Resonance decays don't solve sign problem
- New observables: rapidity dependent spin harmonic flows, spin alignment in central collisions

Thank you!

Subatomic spintronics

• Spin hydrodynamic generation in Hg (Takahashi, et al. Nat. Phys. (2016))

Subatomic spintronics in HIC: a new probe for QGP

