Vorticity and polarization in heavy-ion collisions

Takafumi Niida WAYNE STATE UNIVERSITY

> Hadron Interactions and Polarization from Lattice QCD, Quark model, and Heavy-ion collisions @YITP, Kyoto

Important features in non-central heavy-ion collisions

Strong magnetic field

 $B \sim 10^{13} \text{ T}$ $(eB \sim \text{MeV}^2 \ (\tau = 0.2 \text{ fm}))$

D. Kharzeev, L. McLerran, and H. Warringa, Nucl.Phys.A803, 227 (2008) McLerran and Skokov, Nucl. Phys. A929, 184 (2014)

> →Chiral magnetic effect Chiral magnetic wave

T. Niida, YITP workshop 2019

Vorticity in HIC

In non-central collisions, the initial collective longitudinal flow velocity depends on x.

$$\omega_y = \frac{1}{2} (\nabla \times v)_y \approx -\frac{1}{2} \frac{\partial v_z}{\partial x}$$

T. Niida, YITP workshop 2019

Global polarization

T. Niida, YITP workshop 2019

- Z.-T. Liang and X.-N. Wang, PRL94, 102301 (2005) - S. Voloshin, nucl-th/0410089 (2004)

STAR Detectors

Time Projection Chamber

(lηl<1)

Vertex Position Detector

- Full azimuthal and large rapidity coverage Excellent particle identification

T. Niida, YITP workshop 2019

How to measure the polarization?

Parity-violating decay of hyperons

Daughter baryon is preferentially emitted in the direction of hyperon's spin (opposite for anti-particle)

$$\frac{dN}{d\Omega^*} = \frac{1}{4\pi} (1 + \alpha_{\rm H} \mathbf{P}_{\rm H} \cdot \mathbf{p}_{\mathbf{p}}^*)$$

 P_{H} : Λ polarization p_p^* : proton momentum in the Λ rest frame $\alpha_{\rm H}$: Λ decay parameter $(\alpha_{\wedge} = -\alpha_{\bar{\wedge}} = 0.642 \pm 0.013)$

 $\rightarrow p + \pi^{-}$ (BR: 63.9%, c τ ~7.9 cm) the Λ frame (note that this is opposite for $\overline{\Lambda}$)

C. Patrignani et al. (PDG), Chin. Phys. C 40, 100001 (2016)

T. Niida, YITP workshop 2019

Projection onto the transverse plane

Angular momentum direction can be determined by spectator deflection (spectators deflect outwards) - S. Voloshin and TN, PRC94.021901(R)(2016)

 Ψ_1 : azimuthal angle of the impact parameter ϕ_{p}^{*} : ϕ of daughter proton in Λ rest frame STAR, PRC76, 024915 (2007)

Signal extraction with A hyperons

T. Niida, YITP workshop 2019

Feed-down effect

 \Box Polarization of parent particle R is transferred to its daughter A

$$\begin{split} \mathbf{S}_{\Lambda}^{*} &= C \mathbf{S}_{R}^{*} \qquad \langle S_{y} \rangle \propto \frac{S(S+1)}{3} (\omega + \frac{\mu}{S} B) \\ \text{hi, Karpenko, Lisa, Upsal, and Voloshin, PRC95.054902 (2017)} \qquad \begin{array}{c} C_{\Lambda R} : \text{coefficient of spin transfer from parent} \\ S_{R} &: \text{parent particle's spin} \\ f_{\Lambda R} &: \text{fraction of } \Lambda \text{ originating from parent } R \\ \mu_{R} &: \text{magnetic moment of particle } R \\ \end{array}$$

Becattin

$$\begin{pmatrix} \varpi_{c} \\ B_{c}/T \end{pmatrix} = \begin{bmatrix} \frac{2}{3} \sum_{R} \left(f_{\Lambda R} C_{\Lambda R} - \frac{1}{3} f_{\Sigma^{0} R} C_{\Sigma^{0} R} \right) S_{R}(S_{R} + 1) & \frac{2}{3} \sum_{R} \left(f_{\Lambda R} C_{\Lambda R} - \frac{1}{3} f_{\Sigma^{0} R} C_{\Sigma^{0} R} \right) (S_{R} + 1) \mu_{R} \\ \frac{2}{3} \sum_{R} \left(f_{\overline{\Lambda R}} C_{\overline{\Lambda R}} - \frac{1}{3} f_{\overline{\Sigma}^{0} \overline{R}} C_{\overline{\Sigma}^{0} \overline{R}} \right) S_{\overline{R}}(S_{\overline{R}} + 1) & \frac{2}{3} \sum_{\overline{R}} \left(f_{\overline{\Lambda R}} C_{\overline{\Lambda R}} - \frac{1}{3} f_{\overline{\Sigma}^{0} \overline{R}} C_{\overline{\Sigma}^{0} \overline{R}} \right) (S_{\overline{R}} + 1) \mu_{\overline{R}} \end{bmatrix}^{-1} \begin{pmatrix} P_{\Lambda}^{\text{meas}} \\ P_{\overline{\Lambda}}^{\text{meas}} \\ P_{\overline{\Lambda}}^{\text{meas}} \end{pmatrix} = \begin{bmatrix} \frac{2}{3} \sum_{R} \left(f_{\overline{\Lambda R}} C_{\overline{\Lambda R}} - \frac{1}{3} f_{\overline{\Sigma}^{0} \overline{R}} C_{\overline{\Sigma}^{0} \overline{R}} \right) S_{R}(S_{\overline{R}} + 1) \\ \frac{2}{3} \sum_{R} \left(f_{\overline{\Lambda R}} C_{\overline{\Lambda R}} - \frac{1}{3} f_{\overline{\Sigma}^{0} \overline{R}} C_{\overline{\Sigma}^{0} \overline{R}} \right) S_{\overline{R}}(S_{\overline{R}} + 1) \\ P_{\overline{\Lambda}}^{\text{meas}} \end{bmatrix}^{-1} \begin{bmatrix} P_{\Lambda}^{\text{meas}} \\ P_{\Lambda}^{\text{meas}} \\ P_{\overline{\Lambda}}^{\text{meas}} \end{bmatrix}^{-1} \begin{bmatrix} P_{\Lambda}^{\text{meas}} \\ P_{\Lambda}^{\text{meas}} \\ P_{\overline{\Lambda}}^{\text{meas}} \end{bmatrix} \begin{bmatrix} P_{\Lambda}^{\text{meas}} \\ P_{\overline{\Lambda}}^{\text{meas}} \\ P_{\overline{\Lambda}}^{\text{meas}} \end{bmatrix} \begin{bmatrix} P_{\Lambda}^{\text{meas}} \\ P_{\Lambda}^{\text{meas}} \\ P_{\Lambda}^{\text{meas}} \\ P_{\Lambda}^{\text{meas}} \end{bmatrix} \begin{bmatrix} P_{\Lambda}^{\text{meas}} \\ P_{\Lambda}^{\text$$

Decay	С
Parity conserving: $1/2^+ \rightarrow 1/2^+ 0^-$	-1/3
Parity conserving: $1/2^- \rightarrow 1/2^+ 0^-$	1
Parity conserving: $3/2^+ \rightarrow 1/2^+ 0^-$	1/3
Parity-conserving: $3/2^- \rightarrow 1/2^+ 0^-$	-1/5
$\Xi^0 ightarrow \Lambda + \pi^0$	+0.900
$\Xi^- ightarrow \Lambda + \pi^-$	+0.927
$\Sigma^0 o \Lambda + \gamma$	-1/3

T. Niida, YITP workshop 2019

$i-\Lambda$ are primary, while ~60% are feed-down

15%-20% dilution of primary Λ polarization (model-dependent)

nt R to Λ

First paper on A polarization from STAR

PHYSICAL REVIEW C 76, 024915 (2007)

Global polarization measurement in Au+Au collisions

T. Niida, YITP workshop 2019

Au+Au collisions at $\sqrt{s_{NN}} = 62.4$ and 200 GeV in 2004 with very limited statistics (~9M events)

Results are consistent with zero... giving an upper limit of $P_H < 2\%$

III. CONCLUSION

The Λ and $\bar{\Lambda}$ hyperon global polarization has been measured in Au+Au collisions at center-of-mass energies $\sqrt{s_{NN}} = 62.4$ and 200 GeV with the STAR detector at RHIC. An upper limit of $|P_{\Lambda,\bar{\Lambda}}| \leq 0.02$ for the global polarization of Λ and $\bar{\Lambda}$ hyperons within the STAR detector acceptance is

First observation of fluid vortices in HIC

T. Niida, YITP workshop 2019

The Fastest Fluid by Sylvia Morrow

Superhot material spins at an incredible rate.

- Positive polarization signal at lower energies!
- polarization looks to increase in lower energies
- anti- Λ is systematically larger than Λ

Becattini, Karpenko, Lisa, Upsal, and Voloshin, PRC95.054902 (2017)

 1ω

 $\mu_{\Lambda}B$

T

 μ_{Λ} : Λ magnetic moment T: temperature at thermal equilibrium

$$\omega = (P_{\Lambda} + P_{\bar{\Lambda}})k_B T/\hbar$$

~ 0.02-0.09 fm⁻¹
~ 0.6-2.7 × 10²²s⁻¹
(T=160 MeV)

The most vortical fluid ever observed!

Possible probe of magnetic field

nuclear magneton $\mu_N = -0.613 \mu_{\Lambda}$

McLerran and Skokov, Nucl. Phys. A929, 184 (2014)

conductivity increases B-lifetime

 $B \sim 10^{13} {\rm T}$ $(eB \sim \mathrm{MeV}^2 \ (\tau = 0.2 \ \mathrm{fm}))$

Extracted B-field at freeze-out assuming local thermal equilibrium, although it's consistent with zero. Need more data! \rightarrow BES-II and Isobaric collisions

11

Positive signal at $\sqrt{s_{NN}} = 200 \text{ GeV}$

T. Niida, YITP workshop 2019

$P_H(\Lambda) \ [\%] = 0.277 \pm 0.040 (\text{stat}) \pm_{0.049}^{0.039} (\text{sys})$ $P_H(\bar{\Lambda}) \ [\%] = 0.240 \pm 0.045 (\text{stat}) \pm_{0.045}^{0.061} (\text{sys})$

 $-5-7\sigma$ significance, comparable to the combined result of 7.7-39 GeV

- Feed-down ~15%-20% reduction of $P_{\rm H}$ (model-dependent) Becattini, Karpenko, Lisa, Upsal, and Voloshin, PRC95.054902 (2017)

UrQMD+vHLLE: I. Karpenko and F. Becattini, EPJC(2017)77:213 AMPT: H. Li et al., Phys. Rev. C 96, 054908 (2017)

Centrality dependence of P_H

In most central collision \rightarrow no initial angular momentum As expected, the polarization decreases in more central collisions

D(TM) n dependence of P_H

I. Karpenko and F. Becattini, EPJC(2017)77:213 W.-T. Deng and X.-G. Huang, arXiv:1609.01801

^aThe data do not show significant η dependence • Maybe due to baryon transparency at higher energy ^a Also due to event-by-event C.M. fluctuations

14

pt dependence of P_H

T. Niida, YITP workshop 2019

^aNo significant p_T dependence, as expected from the initial angular momentum of the system

^aHydrodynamic model underestimates the data. Initial conditions affect the magnitude and dependence on p_T

3D viscous hydrodynamic model with 2 initial conditions (ICs) - UrQMD IC

- Glauber with source tilt IC

F. Becattini and I. Karpenko, PRL120.012302, 2018

Azimuthal angle dependence of P_H

T. Niida, YITP workshop 2019

- Larger polarization in in-plane than in out-of-plane
- Opposite to hydrodynamic model! (larger in out-of-plane)

0.012 0.009 0.006 0.003 0.000 -0.003 -0.006 -0.009-0.012

16

A polarization vs. charge asymmetry?

Chiral Separation Effect

B-field + massless quarks + non-zero $\mu_v \rightarrow axial current J_5$ (spin alignment + spin and momentum in (anti)parallel for RH(LH) quarks)

by B-field (Chiral Separation Effect), S. Shlichting and S. Voloshin

 \Box Use charge asymmetry A_{ch} instead of μ_{V}

$$\mu_{\rm v}/T \propto \frac{\langle N_+ - N_- \rangle}{\langle N_+ + N_- \rangle} =$$

$\mu_{\rm V}>0$

- \Box A polarization may have a contribution from the axial current J₅ induced

 $A_{\rm ch}$

what's the expectation? true for u-quark but also for Λ ?

A polarization vs charge asymmetry?

T. Niida, YITP workshop 2019

Slopes of Λ and anti- Λ seem to be different. (statistical significance is $\sim 2\sigma$ level)

Possibly a contribution from the axial current?

Go to the LHC energy

vHLLE+UrQMD: Y. Karpenko and F. Becattini, EPJC(2017)77:213 AMPT: H. Li et al., Phys. Rev. C 96, 054908 (2017)

T. Niida, YITP workshop 2019

 $\sqrt{s_{NN}}$ [GeV]

 $P_H(\Lambda)[\%] = -0.08 \pm 0.10 \text{ (stat)} \pm 0.04 \text{ (syst)}$ $P_H(\bar{\Lambda})[\%] = 0.05 \pm 0.10 \text{ (stat)} \pm 0.03 \text{ (syst)}$

M. Konyushikhin (ALICE), QCD Chirality Workshop 2017

$dv_1/dy vs$ polarization in data

F. Becattini et al., Eur. Phys. J. C (2015)75:406 0.04 η_{m} =4.36 η_{m} =2.36 0.03 $\eta_{\rm m}^{\rm m}$ =2.86 $\eta_{\rm m}^{\rm m}$ =3.36 0.02 η_m=3.86 ____ STAR ⊷--0.01 5 -0.01 -0.02 -0.03 -0.04 -2 -4 Y (rapidity)

Fig. 6 Directed flow of pions for different values of η_m parameter with $\eta/s = 0.1$ compared with STAR data [22]

$$\frac{dN}{d\phi} \propto (1 + 2v_1 \cos(\phi - \Psi) + 2v_2 \cos(2\phi - 2\Psi) + \cdots)$$

- Vorticity is likely related to the directed flow.
- The tilted source accounting for vorticity provides a better description of v_1 !

A similar energy dependence of dv_1/dy to the polarization!

T. Niida, YITP workshop 2019

Polarization along the beam direction

- S. Voloshin, SQM2017
- F. Becattini and I. Karpenko, PRL120.012302 (2018)

Stronger flow in in-plane than in out-of-plane could make local polarization along beam axis!

Longitudinal component, P_z, can be expressed with $<\cos\theta_{\rm p}^*>$. $<(\cos\theta_{\rm p})^2$ accounts for an acceptance effect

21

Polarization along the beam direction

- Effect of Ψ_2 resolution is not corrected here

T. Niida, YITP workshop 2019

- AMPT model: X. Xia, H. Li, Z. Tang, Q. Wang, arXiv:1803.0086

Centrality dependence of P_z modulation

T. Niida, YITP workshop 2019

^aStrong centrality dependence as in v₂ ^aSimilar magnitude to the global polarization ^a~5 times smaller magnitude than the hydro and AMPT with the opposite sign!

Sign problem in P_z

Opposite sign to hydrodynamic model and AMPT model

- F. Becattini and I. Karpenko, PRL.120.012302 (2018)
 3D viscous hydrodynamic model with UrQMD initial condition assuming a local thermal equilibrium
- AMPT: X. Xia, H. Li, Z. Tang, Q. Wang, PRC98.024905 (2018)

Same sign as chiral kinetic approach

- Y. Sun and C.-M. Ko, arXiv:1810.10359
- Assuming non-equilibrium of spin degree of freedom
- Smaller quark scattering cross section changes the sign

Suggest incomplete thermal equilibrium of spin degree of freedom as it develops later in time unlike the global polarization?

Contributions to P_z in hydro

I. Karpenko, QM2018

Longitudinal quadrupole f_2 :

 P_z dominated by temperature gradient and relativistic term, but not by kinematic vorticity based on the hydro model.

How small is the kinematic vorticity? Can we estimate it with the blast-wave model?

Blast-wave model

- Hydro inspired model parameterized with freeze-out condition assuming the longitudinal boost invariance
 - Freeze-out temperature T_f
 - Radial flow rapidity ρ_0 and its modulation ρ_2 -
 - Source size R_x and R_y

$$\rho(r,\phi_s) = \tilde{r}[\rho_0 + \rho_2 \cos(2\phi_b)]$$
$$\tilde{r}(r,\phi_s) = \sqrt{(r\cos\phi_s)^2/R_x^2 + (r\sin\phi_s)^2}$$

• Calculate vorticity at the freeze-out using the parameters extracted from spectra, v₂, and HBT fit

$$\begin{split} \langle \omega_z \sin(2\phi) \rangle &= \frac{\int d\phi_s \int r dr \, I_2(\alpha_t) K_1(\beta_t)}{\int d\phi_s \int r dr \, I_0(\alpha_t) K_1(\beta_t)} \\ \omega_z &= \frac{1}{2} \left(\frac{\partial u_y}{\partial x} - \frac{\partial u_x}{\partial y} \right), \end{split}$$

u: local flow velocity, In, Kn: modified Bessel functions

T. Niida, YITP workshop 2019

F. Retiere and M. Lisa, PRC70.044907 (2004)

 $(s)^2/R_u^2$

FIG. 2. Schematic illustration of an elliptical subshell of the source. Here, the source is extended out of the reaction plane $(R_v > R_x)$. Arrows represent the direction and magnitude of the flow boost. In this example, $\rho_2 > 0$ [see Eq. (4)].

 ϕ_s : azimuthal angle of the source element ϕ_b : boost angle perpendicular to the elliptical subshell

ω_z and P_z from the BW model

e.g. Blast-wave fit to spectra and v_2

PHENIX, PRC93.051902(R) (2016)

Calculated vorticity ω_z shows the sine modulation. Assuming a local thermal equilibrium, z-component of polarization is estimated as follows: $P_z \approx \omega_z / (2T)$

P_z modulation from the BW model

BW parameters obtained with HBT: STAR, PRC71.044906 (2005)

X. Xia, H. Li, Z. Tang, Q. Wang, PRC98.024905 (2018)

T. Niida, S. Voloshin, A. Dobrin, and R. Bertens, in preparation

T. Niida, YITP workshop 2019

Summary

• Observation of positive Λ global polarization at $\sqrt{s_{NN}} = 7.7-62.4$ GeV, and later at 200 GeV

- o Indicating the thermal vorticity of the system in HIC $\omega \sim 10^{22} \text{ s}^{-1}$ (T=160 MeV)
- o Polarization decreases at higher energies, and
- o Larger signal in more peripheral collisions but no significant dependence on p_{T}
 - → Quantitatively consistent with hydrodynamic and AMPT models
- o Larger signal in in-plane than in out-of-plane
 - → Disagree with hydrodynamic model
- o Charge-asymmetry dependence (~ 2σ level) in the polarization → A possible relation to the axial current induced by B-field
- $\square \Lambda$ polarization along the beam direction at $\sqrt{s_{NN}} = 200$ GeV
 - data and theoretical calculations in the sign
 - Strong centrality dependence as in the elliptic flow
- The blast-wave model predicts the same sign and similar magnitude to the data T. Niida, YITP workshop 2019

• Quadrupole structure relative to the 2nd-order event plane, as expected from the elliptic flow \rightarrow Qualitatively consistent with a picture of the elliptic flow but agree/disagree among the

Outlook

Isobar collision data (Ru+Ru, Zr+Zr) already taken in 2018! o Same mass number but different number of protons \rightarrow 10% difference in the magnetic field \rightarrow More P_H splitting btw Λ and anti- Λ in Ru?

 \square New 27 GeV data taken in 2018! (x10 events with ~1.5 better EP resolution) o Possible probe of the magnetic field from Λ vs anti- Λ global polarization

Beam Energy Scan II (2019+) with STAR detector upgrade o x10 events for $\sqrt{s_{NN}} = 7.7-19.6$ GeV (collider mode) + $\sqrt{s_{NN}} = 3-7.7$ GeV (Fixed target) o How about at forward/backward rapidity? How about for multi-strangeness?

D.-X. Wei et al., arXiv:1810.00151 Au+Au 20-50% (%) 10 $\sqrt{s_{_{\rm NN}}}$ (GeV)

Back up

T. Niida, YITP workshop 2019

Effect of non-zero⁰⁰ chemical potential

Non-zero chemical potential makes difference in polarization between Λ and anti- Λ , but the effect seems to be small.

~ 5.5-6.8

What's the origin of v₁?

Preferential emission of forward (backward) going participants results in the initial source tilt. The initial tilt with an expansion leads to a vorticity, and creates η dependence of directed flow.

T. Niida, YITP workshop 2019

Vorticity is likely related to directed flow

Hydro with the "tilted" source

Fig. 6 Directed flow of pions for different values of η_m parameter with $\eta/s = 0.1$ compared with STAR data [22]

Fig. 9 Angular momentum (in \hbar units) of the plasma with Bjorken initial conditions as a function of the parameter η_m

T. Niida, YITP workshop 2019

Fig. 7 Directed flow of pions for different values of η/s with $\eta_m = 2.0$ compared with STAR data [22]

The tilted source which accounts for vorticity provides a better description of v_1 !

Chiral Magnetic Effect (CME)

massless quarks chirality imbalance Magnetic field ++

spin alignment *(opposite direction* for opposite sign)

Induction of electric current along the magnetic field, called Chiral Magnetic Effect (CME)

D. Kharzeev, R. Pisarski, M. Tytgat, PRL81, 512 (1998) D. Kharzeev, PPNP75(2014)133-151

Blast-wave pa

Quadrupole or sine structure of ω_z is expected.

T. Niida, YITP workshop 2019

leter

S. Voloshin, arXiv:1710.08934

 $r_{max} = R[1 - a\cos(2\phi_s)],$ $\rho_t = \rho_{t,max}[r/r_{max}(\phi_s)][1 + b\cos(2\phi_s)] \approx \rho_{t,max}(r/R)[1 + (a+b)\cos(2\phi_s)].$

 $\omega_z = 1/2(\nabla \times \mathbf{v})_z \approx (\rho_{t,nmax}/R) \sin(n\phi_s)[b_n - a_n].$

a_n: spatial anisotropy
b_n: flow anisotropy
R: reference source radius
ρ_t: transverse flow velocity

Systematic uncertainties

Case of 200 GeV as an example

- Event plane determination: ~22%
- Dethods to extract the polarization signal: ~21%
- ^a Possible contribution from the background: ~13%
- ^a Topological cuts: <3%
- \Box Uncertainties of the decay parameter: ~2% for Λ , ~9.6% for anti- Λ \Box Extraction of Λ yield (BG estimate): <1%
- Also, the following studies were done to check if there is no experimental effect: ^a Two different polarities of the magnetic field for TPC
- Acceptance effect
- ^D Different time period during the data taking ^a Efficiency effect

