Vorticity and polarization in heavy-ion collisions

Takafumi Niida

WAYNE STATE UNIVERSITY

Office of
Science

Hadron Interactions and Polarization from Lattice QCD, Quark model, and Heavy-ion collisions @YITP, Kyoto

Important features in non-central heavy-ion collisions

Strong magnetic field

$$
\begin{aligned}
B & \sim 10^{13} \mathrm{~T} \\
(e B & \left.\sim \operatorname{MeV}^{2}(\tau=0.2 \mathrm{fm})\right)
\end{aligned}
$$

\rightarrow Chiral magnetic effect Chiral magnetic wave
ctiral maynetic wave

Orbital angular momentum
 Chiral vortical effect

Vorticity in HIC

the initial collective longitudinal flow velocity depends on x .

$$
\omega_{y}=\frac{1}{2}(\nabla \times v)_{y} \approx-\frac{1}{2} \frac{\partial v_{z}}{\partial x}
$$

Global polarization

- Z.-T. Liang and X.-N. Wang, PRL94, 102301 (2005)
- S. Voloshin, nucl-th/0410089 (2004)

STAR Detectors

TPC dE/dx vs momentum/charge

TOF $1 / \beta$ vs momentum/charge

How to measure the polarization?

Parity-violating decay of hyperons

Daughter baryon is preferentially emitted in the direction of hyperon's spin (opposite for anti-particle)

$$
\frac{d N}{d \Omega^{*}}=\frac{1}{4 \pi}\left(1+\alpha_{\mathrm{H}} \mathbf{P}_{\mathrm{H}} \cdot \mathbf{p}_{\mathbf{p}}^{*}\right)
$$

Рн: ^ polarization
Pp^{*} : proton momentum in the \wedge rest frame α н: \wedge decay parameter

$$
(\alpha \wedge=-\alpha \bar{\wedge}=0.642 \pm 0.013)
$$

$$
\Lambda \rightarrow p+\pi^{-}
$$

(BR: 63.9\%, c $\tau \sim 7.9 \mathrm{~cm}$)
C. Patrignani et al. (PDG), Chin. Phys. C 40, 100001 (2016)

Projection onto the transverse plane

Angular momentum direction can be determined by spectator deflection (spectators deflect outwards)

- S. Voloshin and TN, PRC94.021901 (R)(2016)

Ψ_{1} : azimuthal angle of the impact parameter $\phi_{p}{ }^{*}: \phi$ of daughter proton in \wedge rest frame STAR, PRC76, 024915 (2007)

Signal extraction with Λ hyperons

Feed-down effect

- Only $\sim 25 \%$ of measured \wedge and anti- \wedge are primary, while $\sim 60 \%$ are feed-down from $\Sigma^{*} \rightarrow \wedge \pi, \Sigma 0 \rightarrow \wedge r, \equiv \rightarrow \wedge \pi$
- Polarization of parent particle R is transferred to its daughter Λ

$$
\mathbf{S}_{\Lambda}^{*}=C \mathbf{S}_{R}^{*} \quad\left\langle S_{y}\right\rangle \propto \frac{S(S+1)}{3}\left(\omega+\frac{\mu}{S} B\right)
$$

Becattini, Karpenko, Lisa, Upsal, and Voloshin, PRC95.054902 (2017)
$\mathrm{C}_{\wedge R}$: coefficient of spin transfer from parent R to \wedge
S_{R} : parent particle's spin
$f_{\wedge R}$: fraction of \wedge originating from parent R
μ_{R} : magnetic moment of particle R

$$
\binom{\varpi_{\mathrm{c}}}{B_{\mathrm{c}} / T}=\left[\begin{array}{ll}
\frac{2}{3} \sum_{R}\left(f_{\Lambda R} C_{\Lambda R}-\frac{1}{3} f_{\Sigma^{0} R} C_{\Sigma^{0} R}\right) S_{R}\left(S_{R}+1\right) & \frac{2}{3} \sum_{R}\left(f_{\Lambda R} C_{\Lambda R}-\frac{1}{3} f_{\Sigma^{0} R} C_{\Sigma^{0} R}\right)\left(S_{R}+1\right) \mu_{R} \\
\frac{2}{3} \sum_{\bar{R}}\left(f_{\overline{\Lambda R}} C_{\overline{\Lambda R}}-\frac{1}{3} f_{\bar{\Sigma}^{0} \bar{R}} C_{\bar{\Sigma}^{0} \bar{R}}\right) S_{\bar{R}}\left(S_{\bar{R}}+1\right) & \frac{2}{3} \sum_{\bar{R}}\left(f_{\overline{\Lambda R}} C_{\overline{\Lambda R}}-\frac{1}{3} f_{\bar{\Sigma}^{0} \bar{R}} C_{\bar{\Sigma}^{0} \bar{R}}\right)\left(S_{\bar{R}}+1\right) \mu_{\bar{R}}
\end{array}\right]^{-1}\binom{P_{\Lambda}^{\text {meas }}}{P_{\overline{\bar{\Lambda}}}^{\text {meas }}}
$$

Decay	C
Parity conserving: $1 / 2^{+} \rightarrow 1 / 2^{+} 0^{-}$	$-1 / 3$
Parity conserving: $1 / 2^{-} \rightarrow 1 / 2^{+} 0^{-}$	1
Parity conserving: $3 / 2^{+} \rightarrow 1 / 2^{+}$	0^{-}
Parity-conserving: $3 / 2^{-} \rightarrow 1 / 2^{+}$	0^{-}
$\Xi^{0} \rightarrow \Lambda+\pi^{0}$	$-1 / 3$
$\Xi^{-} \rightarrow \Lambda+\pi^{-}$	+0.900
$\Sigma^{0} \rightarrow \Lambda+\gamma$	+0.927

15\%-20\% dilution of primary \wedge polarization (model-dependent)

First paper on ^ polarization from STAR

PHYSICAL REVIEW C 76, 024915 (2007)
Global polarization measurement in Au+Au collisions

Au+Au collisions at $\sqrt{ }$ SnN $=62.4$ and 200 GeV in 2004 with very limited statistics ($\sim 9 \mathrm{M}$ events)

Results are consistent with zero... giving an upper limit of $\mathrm{P}_{\mathrm{H}}<2 \%$

III. CONCLUSION

The Λ and $\bar{\Lambda}$ hyperon global polarization has been measured in $\mathrm{Au}+\mathrm{Au}$ collisions at center-of-mass energies $\sqrt{s_{N N}}=62.4$ and 200 GeV with the STAR detector at RHIC. An upper limit of $\left|P_{\Lambda, \bar{\Lambda}}\right| \leqslant 0.02$ for the global polarization of Λ and $\bar{\Lambda}$ hyperons within the STAR detector acceptance is

First observation of fluid vortices in HIC

The Fastest Fluid
by Sylvia Morrow
Superhot material spins at an incredible rate.

Positive polarization signal at lower energies!

- polarization looks to increase in lower energies
- anti- \wedge is systematically larger than \wedge
$\mu_{\wedge}: \wedge$ magnetic moment
T: temperature at thermal equilibrium
Becattini, Karpenko, Lisa, Upsal, and Voloshin, PRC95.054902 (2017)

$$
\begin{array}{rlrl}
P_{\Lambda} & \simeq \frac{1}{2} \frac{\omega_{\|}}{T}+\frac{\mu_{\Lambda} B}{T} & \omega & =\left(P_{\Lambda}+P_{\bar{\Lambda}}\right) k_{B} T / \hbar \\
P_{\bar{\Lambda}} \simeq \frac{1}{2} \frac{\omega_{\|}}{T}-\frac{\mu_{\Lambda} B}{T} & & \sim 0.02-0.09 \mathrm{fm}^{-1} \\
& & \sim 0.6-2.7 \times \underset{(\mathrm{T}=160 \mathrm{MeV})}{10^{22} \mathrm{~s}^{-1}}
\end{array}
$$

The most vortical fluid ever observed!

Possible probe of magnetic field

Becattini, Karpenko, Lisa, Upsal, and Voloshin, PRC95.054902 (2017)

$$
\begin{aligned}
& P_{\Lambda} \simeq \frac{1}{2} \frac{\omega}{T}+\frac{\mu_{\Lambda} B}{T} \\
& P_{\bar{\Lambda}} \simeq \frac{1}{2} \frac{\omega}{T}-\frac{\mu_{\Lambda} B}{T} \\
& \mu_{\Lambda}: \wedge \text { magnetic moment } \\
& B=\left(P_{\Lambda}-P_{\bar{\Lambda}}\right) k_{B} T / \mu_{\mathrm{N}} \\
& \sim 5.0 \times 10^{13}[\text { Tesla }] \\
& \text { nuclear magneton } \mu_{\mathrm{N}}=-0.613 \mu \wedge
\end{aligned}
$$

McLerran and Skokov, Nucl. Phys. A929, 184 (2014)

conductivity increases B-lifetime

$$
\begin{aligned}
B & \sim 10^{13} \mathrm{~T} \\
(e B & \left.\sim \operatorname{MeV}^{2}(\tau=0.2 \mathrm{fm})\right)
\end{aligned}
$$

Extracted B-field at freeze-out assuming local thermal equilibrium, although it's consistent with zero.
Need more data! \rightarrow BES-II and Isobaric collisions

Positive signal at $\sqrt{ } s_{N N}=200 \mathrm{GeV}$

$$
\begin{aligned}
& P_{H}(\Lambda)[\%]=0.277 \pm 0.040(\text { stat }) \pm_{0.049}^{0.039}(\text { sys }) \\
& P_{H}(\bar{\Lambda})[\%]=0.240 \pm 0.045(\text { stat }) \pm_{0.045}^{0.061}(\text { sys })
\end{aligned}
$$

- 5-7 σ significance, comparable to the combined result of $7.7-39 \mathrm{GeV}$
- Feed-down ~15\%-20\% reduction of P_{H} (model-dependent) Becattini, Karpenko, Lisa, Upsal, and Voloshin, PRC95.054902 (2017)

UrQMD+vHLLE: I. Karpenko and F. Becattini, EPJC(2017)77:213
AMPT: H. Li et al., Phys. Rev. C 96, 054908 (2017)

Centrality dependence of P_{H}

In most central collision \rightarrow no initial angular momentum
As expected, the polarization decreases in more central collisions

η dependence of P_{H}

- Shear flow structure/initial flow velocity would be stronger in forward/backward region
- Expect rapidity dependence of the polarization

STAR, PRC98, 014910 (2018)
-The data do not show significant η dependence - Maybe due to baryon transparency at higher energy - Also due to event-by-event C.M. fluctuations

p_{T} dependence of P_{H}

-No significant рт dependence, as expected from $^{\text {d }}$ the initial angular momentum of the system

口Hydrodynamic model underestimates the data. Initial conditions affect the magnitude and dependence on pt

3D viscous hydrodynamic model with 2 initial conditions (ICs)

- UrQMD IC
- Glauber with source tilt IC
F. Becattini and I. Karpenko, PRL120.012302, 2018

Azimuthal angle dependence of P_{H}

I. Karpenko and F. Becattini, EPJC(2017)77:213
\downarrow Larger polarization in in-plane than in out-of-plane
\uparrow Opposite to hydrodynamic model! (larger in out-of-plane)

\wedge polarization vs. charge asymmetry?

Chiral Separation Effect

B-field + massless quarks + non-zero $\mu_{v} \rightarrow$ axial current J_{5}
(spin alignment + spin and momentum in (anti)parallel for RH(LH) quarks)
$\square \wedge$ polarization may have a contribution from the axial current J_{5} induced by B-field (Chiral Separation Effect), S. Shlichting and S. Voloshin

- Use charge asymmetry $A_{c h}$ instead of μ_{v}
what's the expectation? true for u-quark but also for \wedge ?

$$
\mu_{\mathrm{v}} / T \propto \frac{\left\langle N_{+}-N_{-}\right\rangle}{\left\langle N_{+}+N_{-}\right\rangle}=A_{\mathrm{ch}}
$$

\wedge polarization vs charge asymmetry?

Slopes of Λ and anti- \wedge seem to be different.
(statistical significance is $\sim 2 \sigma$ level)

Possibly a contribution from the axial current?

Go to the LHC energy

$$
\begin{aligned}
& P_{H}(\Lambda)[\%]=-0.08 \pm 0.10 \text { (stat) } \pm 0.04 \text { (syst) } \\
& P_{H}(\bar{\Lambda})[\%]=0.05 \pm 0.10 \text { (stat) } \pm 0.03 \text { (syst) }
\end{aligned}
$$

M. Konyushikhin (ALICE), QCD Chirality Workshop 2017
vHLLE+UrQMD: Y. Karpenko and F. Becattini, EPJC(2017)77:213
$\sqrt{\mathrm{s}_{\mathrm{NN}}}[\mathrm{GeV}]$ AMPT: H. Li et al., Phys. Rev. C 96, 054908 (2017)

$d v_{1} / d y$ vs polarization in data

Fig. 6 Directed flow of pions for different values of η_{m} parameter with $\eta / s=0.1$ compared with STAR data [22]

$$
\frac{d N}{d \phi} \propto\left(1+2 v_{1} \cos (\phi-\Psi)+2 v_{2} \cos (2 \phi-2 \Psi)+\cdots\right)
$$

- Vorticity is likely related to the directed flow.
- The tilted source accounting for vorticity provides a better description of v_{1} !

A similar energy dependence of $\mathrm{dv}_{1} / \mathrm{dy}$ to the polarization!

Polarization along the beam direction

S. Voloshin, SQM2017
F. Becattini and I. Karpenko, PRL120.012302 (2018)

$$
\begin{aligned}
\frac{d N}{d \Omega^{*}} & =\frac{1}{4 \pi}\left(1+\alpha_{\mathrm{H}} \mathbf{P}_{\mathbf{H}} \cdot \mathbf{p}_{p}^{*}\right) \\
\left\langle\cos \theta_{p}^{*}\right\rangle & =\int \frac{d N}{d \Omega^{*}} \cos \theta_{p}^{*} d \Omega^{*} \\
& =\alpha_{\mathrm{H}} P_{z}\left\langle\left(\cos \theta_{p}^{*}\right)^{2}\right\rangle \\
\therefore P_{z} & =\frac{\left\langle\cos \theta_{p}^{*}\right\rangle}{\alpha_{\mathrm{H}}\left\langle\left(\cos \theta_{p}^{*}\right)^{2}\right\rangle} \\
& =\frac{3\left\langle\cos \theta_{p}^{*}\right\rangle}{\alpha_{\mathrm{H}}} \text { (if perfect detector) }
\end{aligned}
$$

α н: hyperon decay parameter
$\theta_{p}^{*}: \theta$ of daughter proton in Λ rest frame

Stronger flow in in-plane than in out-of-plane could make local polarization along beam axis!

Longitudinal component, P_{z}, can be expressed with $\left\langle\cos \theta_{\mathrm{p}}{ }^{*}\right\rangle$. $<\left(\cos \theta_{\mathrm{p}}{ }^{*}\right)^{2}>$ accounts for an acceptance effect

Polarization along the beam direction

- Effect of Ψ_{2} resolution is not corrected here
S. Voloshin, SQM2017

Hydro calculation of P_{z}
F. Becattini and I. Karpenko, PRL. 120.012302 (2018)

out-of-plane

in-plane

- Sine structure as expected from the elliptic flow!
\square Opposite sign to hydrodynamic model and a transport model (AMPT)
- Hydro model: F. Becattini and I. Karpenko, PRL. 120.012302 (2018)
- AMPT model: X. Xia, H. Li, Z. Tang, Q. Wang, arXiv:1803.0086

Centrality dependence of P_{z} modulation

\square Strong centrality dependence as in V_{2}
-Similar magnitude to the global polarization ם~5 times smaller magnitude than the hydro and AMPT with the opposite sign!

Sign problem in P_{z}

Opposite sign to hydrodynamic model and AMPT model

- F. Becattini and I. Karpenko, PRL.120.012302 (2018) 3D viscous hydrodynamic model with UrQMD initial condition assuming a local thermal equilibrium
- AMPT: X. Xia, H. Li, Z. Tang, Q. Wang, PRC98.024905 (2018)

Same sign as chiral kinetic approach

- Y. Sun and C.-M. Ko, arXiv:1810.10359
- Assuming non-equilibrium of spin degree of freedom
- Smaller quark scattering cross section changes the sign

Contributions to P_{z} in hydro

I. Karpenko, QM2018

$$
\begin{aligned}
& S^{\mu} \propto \varepsilon^{\mu \rho \sigma \tau} \varpi_{\rho \sigma} p_{\tau}=\varepsilon^{\mu \rho \sigma \tau}\left(\partial_{\rho} \beta_{\sigma}\right) p_{\tau}=\underbrace{\varepsilon^{\mu \rho \sigma \tau} p_{\tau} \partial_{\rho}\left(\frac{1}{T}\right) u_{\sigma}}_{\text {grad } T}+\underbrace{\frac{1}{T} 2\left[\omega^{\mu}(u \cdot p)-u^{\mu}(\omega \cdot p)\right]}_{\text {"NR vorticity" }}+\underbrace{\varepsilon^{\mu \rho \sigma \tau} p_{\tau} A_{\sigma} u_{\rho}}_{\text {acceleration }} \\
& \text { udinal quadrupole } f_{2}: \quad \text { temperature gradient } \quad \text { rematic vorticity } \quad \text { relativistic term }
\end{aligned}
$$

Longitudinal quadrupole f_{2} :

P_{z} dominated by temperature gradient and relativistic term, but not by kinematic vorticity based on the hydro model.

How small is the kinematic vorticity?
Can we estimate it with the blast-wave model?

Blast-wave model

- Hydro inspired model parameterized with freeze-out condition assuming the longitudinal boost invariance
- Freeze-out temperature T_{f}
- Radial flow rapidity ρ_{0} and its modulation ρ_{2}
- Source size R_{x} and R_{y}

$$
\begin{aligned}
& \rho\left(r, \phi_{s}\right)=\tilde{r}\left[\rho_{0}+\rho_{2} \cos \left(2 \phi_{b}\right)\right] \\
& \tilde{r}\left(r, \phi_{s}\right)=\sqrt{\left(r \cos \phi_{s}\right)^{2} / R_{x}^{2}+\left(r \sin \phi_{s}\right)^{2} / R_{y}^{2}}
\end{aligned}
$$

- Calculate vorticity at the freeze-out using the parameters extracted from spectra, v_{2}, and HBT fit

$$
\begin{aligned}
\left\langle\omega_{z} \sin (2 \phi)\right\rangle & =\frac{\int d \phi_{s} \int r d r I_{2}\left(\alpha_{t}\right) K_{1}\left(\beta_{t}\right) \omega_{z} \sin \left(2 \phi_{b}\right)}{\int d \phi_{s} \int r d r I_{0}\left(\alpha_{t}\right) K_{1}\left(\beta_{t}\right)} \\
\omega_{z} & =\frac{1}{2}\left(\frac{\partial u_{y}}{\partial x}-\frac{\partial u_{x}}{\partial y}\right),
\end{aligned}
$$

u: local flow velocity, $\mathrm{I}_{\mathrm{n}}, \mathrm{K}_{\mathrm{n}}$: modified Bessel functions
F. Retiere and M. Lisa, PRC70.044907 (2004)

FIG. 2. Schematic illustration of an elliptical subshell of the source. Here, the source is extended out of the reaction plane $\left(R_{y}>R_{x}\right)$. Arrows represent the direction and magnitude of the flow boost. In this example, $\rho_{2}>0$ [see Eq. (4)]
Φ_{s} : azimuthal angle of the source element
Φ_{b} : boost angle perpendicular to the elliptical subshell

ω_{z} and P_{z} from the BW model

e.g. Blast-wave fit to spectra and v_{2}

Data:
PHENIX, PRC69.034909 (2004)
PHENIX, PRC93.051902(R) (2016)

Calculated vorticity ω_{z} shows the sine modulation. Assuming a local thermal equilibrium, z-component of polarization is estimated as follows:

$$
P_{z} \approx \omega_{z} /(2 T)
$$

P_{z} modulation from the BW model

X. Xia, H. Li, Z. Tang, Q. Wang, PRC98. 024905 (2018)

BW parameters obtained with HBT: STAR, PRC71.044906 (2005)
T. Niida, S. Voloshin, A. Dobrin, and R. Bertens, in preparation

Summary

- Observation of positive \wedge global polarization at $\sqrt{ } \mathrm{SNN}=7.7-62.4 \mathrm{GeV}$, and later at 200 GeV
- Indicating the thermal vorticity of the system in HIC $\omega \sim 10^{22} \mathrm{~s}^{-1}(\mathrm{~T}=160 \mathrm{MeV})$
- Polarization decreases at higher energies, and
- Larger signal in more peripheral collisions but no significant dependence on p_{T}
\rightarrow Quantitatively consistent with hydrodynamic and AMPT models
- Larger signal in in-plane than in out-of-plane
\rightarrow Disagree with hydrodynamic model
- Charge-asymmetry dependence ($\sim 2 \sigma$ level) in the polarization
$\rightarrow A$ possible relation to the axial current induced by B-field
$\square \wedge$ polarization along the beam direction at $\sqrt{ } \mathrm{SNN}^{2}=200 \mathrm{GeV}$
- Quadrupole structure relative to the $2^{\text {nd }}$-order event plane, as expected from the elliptic flow \rightarrow Qualitatively consistent with a picture of the elliptic flow but agree/disagree among the data and theoretical calculations in the sign
- Strong centrality dependence as in the elliptic flow
- The blast-wave model predicts the same sign and similar magnitude to the data

Outlook

- Isobar collision data (Ru+Ru, $\mathrm{Zr}+\mathrm{Zr}$) already taken in 2018!
- Same mass number but different number of protons $\rightarrow 10 \%$ difference in the magnetic field \rightarrow More P_{H} splitting btw Λ and anti- \wedge in Ru?

- New 27 GeV data taken in 2018! (x10 events with ~ 1.5 better EP resolution) - Possible probe of the magnetic field from \wedge vs anti- \wedge global polarization
- Beam Energy Scan II (2019+) with STAR detector upgrade ० x10 events for $\sqrt{S}^{S_{N N}}=7.7-19.6 \mathrm{GeV}$ (collider mode) $+{\sqrt{S_{N N}}}=3-7.7 \mathrm{GeV}$ (Fixed target) o How about at forward/backward rapidity? How about for multi-strangeness?

Back up

Effect of non-zero chemical potential

R. Fang, L. Pang, Q. Wang, and X. Wang, PRC94, 024904 (2016)
Y. Karpenko, sQM2017

Λ and $\bar{\Lambda}:$ UrQMD+vHLLE vs experiment

Non-zero chemical potential makes difference in polarization between Λ and anti- \wedge, but the effect seems to be small.

What's the origin of $v_{1} ?$

Vorticity is likely related to directed flow

Preferential emission of forward(backward) going participants results in the initial source tilt. The initial tilt with an expansion leads to a vorticity, and creates η dependence of directed flow.

Hydro with the "tilted" source

Fig. 6 Directed flow of pions for different values of η_{m} parameter with $\eta / s=0.1$ compared with STAR data [22]

Fig. 7 Directed flow of pions for different values of η / s with $\eta_{m}=2.0$ compared with STAR data [22]

The tilted source which accounts for vorticity provides a better description of v_{l} !

Chiral Magnetic Effect (CME)

Magnetic field + massless quarks + chirality imbalance
spin alignment
(opposite direction for opposite sign)
spin and momentum in (anti-)parallel for right(left)-handed quarks
right-handed quarks \neq left-handed quarks

Induction of electric current along the magnetic field, called Chiral Magnetic Effect (CME)

Blast-wave parameterization

$$
\begin{aligned}
& r_{\max }=R\left[1-a \cos \left(2 \phi_{s}\right)\right], \\
& \rho_{t}=\rho_{t, \max }\left[r / r_{\max }\left(\phi_{s}\right)\right]\left[1+b \cos \left(2 \phi_{s}\right)\right] \approx \rho_{t, \max }(r / R)\left[1+(a+b) \cos \left(2 \phi_{s}\right)\right] . \\
& \omega_{z}=1 / 2(\nabla \times \mathbf{v})_{z} \approx\left(\rho_{t, n \max } / R\right) \sin \left(n \phi_{s}\right)\left[b_{n}-a_{n}\right] . \\
& \quad \text { an: spatial anisotropy } \\
& \text { bn: flow anisotropy } \\
& \text { R: reference source radius } \\
& \rho_{t:} \text { transverse flow velocity }
\end{aligned}
$$

Quadrupole or sine structure of ω_{z} is expected.

Systematic uncertainties

Case of 200 GeV as an example

- Event plane determination: ~22\%
- Methods to extract the polarization signal: ~21\%
- Possible contribution from the background: ~13\%
- Topological cuts: <3\%
- Uncertainties of the decay parameter: $\sim 2 \%$ for $\wedge, \sim 9.6 \%$ for anti- \wedge
- Extraction of \wedge yield (BG estimate): <1\%

Also, the following studies were done to check if there is no experimental effect:

- Two different polarities of the magnetic field for TPC
- Acceptance effect
- Different time period during the data taking
- Efficiency effect

