Hydrodynamic approach to nuclear collisions at beam energy scan energies

Akihiko Monnai (KEK)
In collaboration with: Björn Schenke (BNL) and Chun Shen (Wayne)

Hadron Interactions and Polarization from Lattice QCD, Quark Model, and Heavy Ion Collisions

28th March 2019, Yukawa Institute for Theoretical Physics, Kyoto, Japan
Introduction

- The quark-gluon plasma (QGP)

- A high-temperature phase of QCD (> 2×10^{12} K)
- Well-established theoretically by **lattice QCD** at vanishing μ_B and experimentally by **nuclear collisions**
 - BNL Relativistic Heavy Ion Collider (RHIC)
 - CERN Large Hadron Collider (LHC)
Introduction

- Little is known at finite density ("sign problem" of lattice QCD)
Introduction

- Little is known at finite density ("sign problem" of lattice QCD)

Use nuclear collisions to:
- Determine the quark matter properties at finite T, μ_B
- Verify the existence of a QCD critical point (QCP)
Introduction

- Modeling nuclear collisions

QCD properties

We need a “link” between fundamental QCD properties and experimental data of nuclear collisions

We consider the relativistic hydrodynamic model
Introduction

- Relativistic nuclear collisions

Nuclei (saturated gluons)

Hadronic transport
\[\tau > 10 \text{ fm} \]
- Freeze-out

Hydrodynamic evolution
\[\tau = 1-10 \text{ fm} \]
- Local equilibration

Glasma
\[\tau < 1 \text{ fm} \]
- Collision

Color glass condensate
\[\tau < 0 \text{ fm} \]
Introduction

- Relativistic nuclear collisions

![Diagram of nuclear collision with labels for different phases: Color glass condensate, Glasma, Hydrodynamic evolution, Hadronic transport, Freeze-out, Local equilibration, Collision, and Nuclei (saturated gluons).]
Introduction

- Relativistic nuclear collisions

Glasma (Longitudinal color magnetic & electric fields)

<table>
<thead>
<tr>
<th>Hadronic transport</th>
<th>(\tau > 10 \text{ fm})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freeze-out</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hydrodynamic evolution</th>
<th>(\tau = 1-10 \text{ fm})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local equilibration</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Glasma</th>
<th>(\tau < 1 \text{ fm})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collision</td>
<td></td>
</tr>
</tbody>
</table>

| Color glass condensate | \(\tau < 0 \text{ fm} \) |
Introduction

- Relativistic nuclear collisions

Hadronic transport
\(\tau > 10 \text{ fm} \)
- Freeze-out

Hydrodynamic evolution
\(\tau = 1-10 \text{ fm} \)
- Local equilibration

Glasma
\(\tau < 1 \text{ fm} \)
- Collision

Color glass condensate
\(\tau < 0 \text{ fm} \)

QGP fluid
(After local thermalization)
Introduction

- Relativistic nuclear collisions

- Hadronic transport
 - $\tau > 10 \text{ fm}$
 - Freeze-out

- Hydrodynamic evolution
 - $\tau = 1-10 \text{ fm}$
 - Local equilibration

- Glasma
 - $\tau < 1 \text{ fm}$
 - Collision

- Color glass condensate
 - $\tau < 0 \text{ fm}$
Introduction

- Relativistic nuclear collisions

- Hadronic transport
 - $\tau > 10 \text{ fm}$
 - Freeze-out

- Hydrodynamic evolution
 - $\tau = 1-10 \text{ fm}$
 - Local equilibration

- Glasma
 - $\tau < 1 \text{ fm}$
 - Collision

- Color glass condensate
 - $\tau < 0 \text{ fm}$
Introduction

- Evidence for the QGP fluid

Spatial anisotropy

Momentum anisotropy

Characterized by Fourier harmonics of azimuthal distribution

$$\frac{dN}{d\phi} = \frac{N}{2\pi} [1 + 2v_1 \cos(\phi - \Psi_1) + 2v_2 \cos(2\phi - 2\Psi_2) + 2v_3 \cos(3\phi - 3\Psi_3) + ...]$$

$$v_2 :$$ elliptic flow
Introduction

- Experimental data

Kolb et al., PLB 500, 232 (2001)

Consistent with the nearly-perfect liquid picture up to $p_T \sim 2$ [GeV]

- The QGP is strongly-coupled near the quark-hadron transition
- We may use hydrodynamics for an effective theory of QGP
Is it good at BES energies?

- A historical point of view

![Diagram showing the discovery of a nearly-perfect fluid at RHIC and LHC across different years.](image)
Is it good at BES energies?

- A historical point of view

Discovery of a nearly-perfect fluid

\[\sqrt{s_{NN}} \]

\(\text{Year} \)

1980 1990 2000 2010 2018

Bevalac AGS SPS RHIC RHIC-BES LHC

Not hydro Hydro Hydro

Akihiko Monnai (KEK), HIPLQH 2019, 28th March 2019
Is it good at BES energies?

- A historical point of view (around 2000)

\(\sqrt{s_{NN}} \) vs Year

- Ideal hydro
- Not hydro

1980 1990 2000 2010 2018

Bevalac AGS SPS RHIC
Is it good at BES energies?

- A historical point of view (around 2018)

Viscous hydro

Not hydro

Bevalac

AGS

SPS

RHIC

RHIC-BES

LHC

Shear viscosity: Csernai, Kapusta & McLerran, PRL 97, 152303 (2006)
Small systems and beam energy scan

- Similar but different physics

Small systems

- Temperature: large
- Volume: small

Beam energy scan

- Temperature: small
- Volume: large

- “Evidence of the QGP” such as jet quenching is more sensitive to volume, thermal photons to temperature
Λ polarization and beam energy scan

- Vorticity converted into spin

- Spin-orbit coupling + (possible) magnetic field effects

- More prominent at lower collision energies; a complete understanding of the background medium evolution is required
Overview

1. Introduction
2. Multiple charges
3. Summary and outlook
4. Diffusion and dissipation
2. Multiple charges

Conserved charges

- in relativistic nuclear collisions

Baryon number (B) (>
0 in total)

\[p \quad n \]
+1 \quad +1

Electric charge (Q) (>
0 in total)

\[p \quad n \]
+1 \quad 0

Strangeness (S) (= 0 in total)

\[p \quad n \]
0 \quad 0

Essential in understanding particle-antiparticle ratios

TABLE I: Left two columns: midrapidity yields of common particles from central Pb+Pb collisions measured by the NA49/SPS Collaboration [26-33] at \(\sqrt{s_{NN}} = 6.41 \text{ GeV}. \) Starred hadrons are not measured, but estimated from other hadrons.
Overview of hydro model

- with multiple charges

We start with construction of the QCD equation of state
Equation of state

- Construction
 - Lattice QCD: expansion up to the 4th order
 \[
 \frac{P}{T^4} = \frac{P_0}{T^4} + \sum_{l,m,n} \frac{X_{l,m,n}^{B,Q,S}}{l!m!n!} \left(\frac{\mu_B}{T} \right)^l \left(\frac{\mu_Q}{T} \right)^m \left(\frac{\mu_S}{T} \right)^n
 \]
 - Match to hadron resonance gas (HRG) at lower T
 1. Taylor expansion is not reliable when the fugacity is large
 2. Agreement between lattice QCD and HRG is good in hadronic phase
Equation of state

- Construction

 - (Cont’d)

 3. EOS of hydrodynamic model should match EOS of kinetic theory for correct energy-momentum/charge conservation

\[
E_i \frac{dN_i}{d^3p} = \frac{g_i}{(2\pi)^3} \int \sum p_i^\mu d\sigma_{\mu i} f_i \rightarrow u^\mu, T, \mu_B
\]

- Stefan-Boltzmann limits are used as anchors at very high T where lattice QCD data are scarce
Equation of state

Construction

- Connect to HRG at low T

\[
\frac{P}{T^4} = \frac{1}{2}[1 - f(T, \mu_J)] \frac{P_{\text{had}}(T, \mu_J)}{T^4} + \frac{1}{2}[1 + f(T, \mu_J)] \frac{P_{\text{lat}}(T, \mu_J)}{T^4} \quad J = \{B, Q, S\}
\]

where

\[
f(T, \mu_J) = \tanh[(T - T_c(\mu_B))/\Delta T_c] \\
T_c = 0.16 - 0.4 \times (0.139\mu_B^2 + 0.053\mu_B^4)(\text{GeV}) \quad \Delta T_c = 0.1T_c(0)
\]

Crossover-type EOS

The dependences on sub-leading \(\mu\)'s are approximated to be small

- Parameters are chosen to satisfy thermodynamic conditions:

\[
\frac{\partial^2 P}{\partial T^2} = \frac{\partial s}{\partial T} > 0, \quad \frac{\partial^2 P}{\partial \mu^2_J} = \frac{\partial n_J}{\partial \mu_J} > 0
\]
Strangeness and charge densities

- Strange neutrality condition ($n_S = 0$)

 - μ_S is finite positive at $\mu_B > 0$ because of s quarks (or strange baryons)

 \[\mu_S = \frac{1}{3} \mu_B + \frac{1}{3} \mu_Q - \mu_S = 0 \]

 The condition can be modified by initial fluctuations and diffusion

\[\mu_S = 0 \text{ leads to } n_S \neq 0 \]

The condition can be modified by initial fluctuations and diffusion
Strangeness and charge densities

- Charge-to-baryon ratio \((n_Q = c \, n_B)\)

 - \(\mu_Q\) is finite negative at \(\mu_B > 0\) for neutron rich nuclei \((Z/A < 1/2)\)

\[
\mu_d = \frac{1}{3} \mu_B - \frac{1}{3} \mu_Q > \mu_u = \frac{1}{3} \mu_B + \frac{2}{3} \mu_Q
\]

<table>
<thead>
<tr>
<th>Nucleus</th>
<th>Z/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^1)H</td>
<td>1.000</td>
</tr>
<tr>
<td>(^2)H</td>
<td>0.500</td>
</tr>
<tr>
<td>(^3)He</td>
<td>0.667</td>
</tr>
<tr>
<td>(^{27})Al</td>
<td>0.481</td>
</tr>
<tr>
<td>(^{63})Cu</td>
<td>0.460</td>
</tr>
<tr>
<td>(^{96})Zr</td>
<td>0.417</td>
</tr>
<tr>
<td>(^{96})Ru</td>
<td>0.458</td>
</tr>
<tr>
<td>(^{127})Xe</td>
<td>0.425</td>
</tr>
<tr>
<td>(^{197})Au</td>
<td>0.401</td>
</tr>
<tr>
<td>(^{208})Pb</td>
<td>0.394</td>
</tr>
<tr>
<td>(^{238})U</td>
<td>0.387</td>
</tr>
</tbody>
</table>

- proton rich/neutral nuclei; \(\mu_Q \geq 0\) for \(\mu_B > 0\)
- relevant for background of isobars
- \(c \approx 0.4\) for Au and Pb nuclei
Equation of state

- $\mu_s = \mu_Q = 0$ (conventional; denoted as NEOS B)

- Thermodynamically consistent smooth EoS is obtained
- The strangeness neutrality condition is violated ($n_S < 0$)
Equation of state

- $n_S = 0$, $\mu_Q = 0$ (strangeness neutral; denoted as NEOS BS)

A visible modification is observed at larger μ_B/T

- Finite positive μ_S is seen owing to the neutrality condition
- μ_B is becomes larger at large T for a given n_B
Equation of state

Where you can probe on the μ_B-T plane

$\frac{s}{n_B}$ is constant when entropy and net baryon number are conserved

- $\frac{s}{n_B} = 420$, $\sqrt{s_{NN}} = 200$ GeV
- $\frac{s}{n_B} = 144$, $\sqrt{s_{NN}} = 62.4$ GeV
- $\frac{s}{n_B} = 51$, $\sqrt{s_{NN}} = 19.6$ GeV
- $\frac{s}{n_B} = 30$, $\sqrt{s_{NN}} = 14.5$ GeV

If conformal, it is a straight line because $s \sim T^3$ and $n_B \sim \mu_B T^2$

Larger μ_B is required to fix the s/n_B ratio when pions are dominant
Equation of state

- $n_S = 0, n_Q = 0.4n_B$ (realistic in HIC; denoted as NEOS BQS)

- Finite negative μ_Q owing to the condition $n_Q = 0.4n_B$

- The overall system is positively charged; μ_Q turns positive around $n_Q = 0.5n_B$
Stefan-Boltzmann limit

- Parton gas pressure

\[
\frac{P}{T^4} = \frac{8\pi^2}{45} + \frac{7\pi^2}{60} N_f + \frac{1}{2} \sum_{f=u,d,s} \left(\frac{\mu_f}{T} \right)^2 + \frac{1}{4\pi^2} \sum_{f=u,d,s} \left(\frac{\mu_f}{T} \right)^4
\]

where \(\mu_u = \frac{1}{3} \mu_B + \frac{2}{3} \mu_Q \), \(\mu_d = \frac{1}{3} \mu_B - \frac{1}{3} \mu_Q \), \(\mu_s = \frac{1}{3} \mu_B - \frac{1}{3} \mu_Q - \mu_S \)

- The diagonal and off-diagonal susceptibilities are

\[
\begin{align*}
\chi_2^B &= \frac{1}{3}, \quad \chi_2^Q = \frac{2}{3}, \quad \chi_2^S = 1, \quad \chi_{1,1}^{B,Q} = 0, \quad \chi_{1,1}^{B,S} = -\frac{1}{3}, \quad \chi_{1,1}^{Q,S} = \frac{1}{3}, \\
\chi_4^B &= \frac{2}{9\pi^2}, \quad \chi_4^Q = \frac{4}{3\pi^2}, \quad \chi_4^S = \frac{6}{\pi^2}, \quad \chi_{3,1}^{B,S} = -\frac{2}{9\pi^2}, \quad \chi_{2,2}^{B,S} = \frac{2}{3\pi^2}, \quad \chi_{1,3}^{B,S} = -\frac{2}{\pi^2}, \\
\chi_{3,1}^{B,Q} &= 0, \quad \chi_{2,2}^{B,Q} = \frac{4}{9\pi^2}, \quad \chi_{1,3}^{B,Q} = \frac{4}{9\pi^2}, \quad \chi_{3,1}^{Q,S} = \frac{2}{9\pi^2}, \quad \chi_{2,2}^{Q,S} = \frac{2}{3\pi^2}, \quad \chi_{1,3}^{Q,S} = \frac{2}{\pi^2}, \\
\chi_{2,1,1}^{B,Q,S} &= \frac{2}{9\pi^2}, \quad \chi_{1,2,1}^{B,Q,S} = -\frac{2}{9\pi^2}, \quad \chi_{1,1,2}^{B,Q,S} = -\frac{2}{3\pi^2}
\end{align*}
\]
Stefan-Boltzmann limit

- The chemical potential ratio

\[
\begin{pmatrix}
 n_B \\
 n_Q \\
 n_S
\end{pmatrix} = T^2 \begin{pmatrix}
 \chi_{2,B} \\
 \chi_{1,1,Q} \\
 \chi_{1,1,S} \\
 \chi_{1,1,B} \\
 \chi_{2,Q} \\
 \chi_{1,1,S} \\
 \chi_{1,1,B} \\
 \chi_{2,S} \\
\end{pmatrix} \begin{pmatrix}
 \mu_B \\
 \mu_Q \\
 \mu_S
\end{pmatrix} + \mathcal{O}(\mu^3)
\]

\[n_J = \left. \frac{\partial P}{\partial \mu_J} \right|_{T,\mu_K}\]

NEOS B (\(\mu_S = 0\) and \(\mu_Q = 0\))

- \(\mu_B \approx 3n_B/T^2\), \(\mu_S = 0\), \(\mu_Q = 0\)

NEOS BS (\(n_S = 0\) and \(\mu_Q = 0\))

- \(\mu_B \approx 4.5n_B/T^2\), \(\mu_S \approx 1.5n_B/T^2\), \(\mu_Q = 0\)

NEOS BQS (\(n_S = 0\) and \(n_Q = 0.4n_B\))

- \(\mu_B \approx 4.6n_B/T^2\), \(\mu_S \approx 1.6n_B/T^2\), \(\mu_Q \approx -0.2n_B/T^2\)
Sound velocity c_s

- s/n_B dependence

\[c_s^2 = \left. \frac{\partial P}{\partial e} \right|_{n_K} + \sum_J \frac{n_J}{e + P} \left. \frac{\partial P}{\partial n_J} \right|_{e, n_K} J \neq K \]

- In dense systems, c_s is suppressed at lower T.

- The effect of strangeness neutrality becomes more apparent.

- Finite n_s is relevant to c_s^2 in NEOS B

\[\left. \frac{\partial P}{\partial e} \right|_{n_B} + \frac{n_B}{e + P} \left. \frac{\partial P}{\partial n_B} \right|_e \neq c_s^2 \]

The “conventional definition” w/o Q and S leads to underestimation.
\[\mu_B - \mu_Q - \mu_S \text{ space} \]

- Constant pressure plane

The intercepts \(P(\mu_B^{\text{int}}, 0, 0) = P(0, \mu_Q^{\text{int}}, 0) = P(0, 0, \mu_S^{\text{int}}) \)

\[\mu_B^{\text{int}} > \mu_S^{\text{int}} > \mu_Q^{\text{int}} \] in the hadronic phase because the lightest hadron to carry them are ordered in mass as \(m_p > m_K > m_\pi \)
\(\mu_B - \mu_Q - \mu_S \) space

- Constant pressure plane

\[(a) \quad T = 0.14 \text{ GeV} \]
\[\frac{P}{T^4} = 0.8 \]

\[(b) \quad T = 0.2 \text{ GeV} \]
\[\frac{P}{T^4} = 2 \]

The intercepts \(P(\mu_B^{\text{int}}, 0, 0) = P(0, \mu_Q^{\text{int}}, 0) = P(0, 0, \mu_S^{\text{int}}) \)

\(\mu_B^{\text{int}} > \mu_Q^{\text{int}} > \mu_S^{\text{int}} \) in the QGP phase as \(\chi_2^B = 1/3 \), \(\chi_2^Q = 2/3 \), \(\chi_2^S = 1 \) in the parton gas limit implies \(\mu_B^{\text{int}} / 3 \sim 2\mu_Q^{\text{int}} / 3 \sim \mu_S^{\text{int}} \)
μ_B-μ_Q-μ_S space

- Exploration of the QCD phase diagram

- We do not explore the μ_B-T plane in the BES experiments but a certain slice in the μ_B-μ_Q-μ_S-T hyperplane.

- This may well affect the QCD critical point search.
Hydrodynamic model

- with multiple charges

Dynamical Glauber model → Relativistic hydrodynamic model

\[\partial_\mu T^{\mu\nu} = 0 \]
\[\partial_\mu N^{\mu}_{B,Q,S} = 0 \]
\[\partial_\mu s^\mu \geq 0 \]

UrQMD

Equation of state
\[P = P(\epsilon, n_B, n_Q, n_S) \]

Transport coefficients
\[\eta, \zeta, \kappa_B, \kappa_Q, \kappa_S, ... \]

Information of QCD
Hydrodynamic results

- 3+1 D viscous hydro + UrQMD for Pb-Pb 17.3 GeV in SPS

- Strange neutrality visibly improves description of strange hadrons

- Charge-to-baryon ratio fixing has small effects; π^-/π^+ ratio (>1) is improved
Hydrodynamic results

- Switching temperature dependence

The preferred switching to UrQMD is $0.16 - 0.26$ GeV/fm3

Effects of chemical potential becomes larger for lower e_{SW}
3. Summary and outlook
Summary and outlook

- The QCD matter at finite density poses us challenges:
 - Interplay of multiple charges (B, Q, S) are important
 - Equation of state is constructed
 - Strangeness neutrality condition leads to finite positive \(\mu_S \), and realistic charge-to-baryon ratio for Au/Pb to finite negative \(\mu_Q \)
 - Particle-to-antiparticle ratios are described better in hydro model

- Estimation of baryon, strangeness and charge diffusion including cross-coupling currents

- \(p_T \) spectra, flow harmonics and rapidity distribution

- Realistic EoS for small systems as well as isobar experiments
Summary and outlook

- Our QCD equation of state model NEOS is publicly available: https://sites.google.com/view/qcdneos/home