Weighted Langevin mechanics for potential escape problems

Ryosuke AKASHI（明石遼介） Dept．of Physics，The Univ．of Tokyo

Collaborator：Yuri S．Nagornov． （UTokyo）

Ref．RA and Y．S．Nagornov，J．Phys．Soc．Jpn．87， 063801 （2018）；
Y．S．Nagornov and RA，Physica A 528， 121481 （2019）；
Y．S．Nagornov and RA，arXiv：1907．11316．

1
文部科学省 ポスト「京」萌芽的課題1 基礎科学のフロンティア—極限への挑戦
复合相関か織りなす極限マテリアルー原子スケールからのアフローチ

A bit on my background

03/2014 PhD of engineering, Univ. of Tokyo (Supervisor: Prof. Ryotaro Arita)
04/2014-08/2014 Postdoc at RIKEN-CEMS
09/2014—present Assistant Prof. (助教), Univ. of Tokyo (Prof. Shinji Tsuneyuki’s group)

Research interest

First-principle calculation for materials (especially for superconductors)

Aim: Prediction of new materials
Unambiguous explanation of HTC superconductors

A bit on my background

Main research subjects

First principles calculation of superconducting Tc
i, Development of density functional theory for superconductors RA and R. Arita, PRL 111, 057006 (2013)
ii, 200-kelvin superconductivity in compressed $\mathrm{H}_{\mathrm{x}} \mathrm{S}$
RA, M. Kawamura, Y. Nomura, S. Tsuneyuki, and R. Arita, PRB 91, 224513 (2015);
RA, W. Sano, R. Arita and S. Tsuneyuki, PRL 117, 075503 (2016);
RA, arXiv;1909.02956

Sulfur (super)hydride $\mathrm{H}_{3} \mathrm{~S}$ at extreme pressure

Temperature, K

A bit on my background

Main research subjects

Development of DFT

i, with neural network
R. Nagai, RA, S. Sasaki and S. Tsuneyuki, J. Chem. Phys. 148, 241737 (2018);
R. Nagai, RA, and O. Sugino, arXiv:1903.00238
ii, with relativistic corrections
T. Naito, RA, H.-Z. Liang, and S. Tsuneyuki, in prep.
iii, for nuclei
T. Naito, RA, and H.-Z. Liang, PRC 97, 044319 (2018)

Reaction path search to the metastable structures
RA and Y. S. Nagornov, J. Phys. Soc. Jpn. 87, 063801 (2018);
Y. S. Nagornov and RA, Physica A 528, 121481 (2019);
Y. S. Nagornov and RA, arXiv:1907.11316;
https://github.com/ryosuke-akashi/AtomREM

hcp
\square fcc

A bit on my background

Main research subjects

Development of DFT

i, with neural network
R. Nagai, RA, S. Sasaki and S. Tsuneyuki, J. Chem. Phys. 148, 241737 (2018);
R. Nagai, RA, and O. Sugino, arXiv:1903.00238
ii, with relativistic corrections
T. Naito, RA, H.-Z. Liang, and S. Tsuneyuki, in prep.
iii, for nuclei
T. Naito, RA, and H.-Z. Liang, PRC 97, 044319 (2018)

Reaction path search to the metastable structures
RA and Y. S. Nagornov, J. Phys. Soc. Jpn. 87, 063801 (2018);
Y. S. Nagornov and RA, Physica A 528, 121481 (2019);
Y. S. Nagornov and RA, arXiv:1907.11316;
https://github.com/ryosuke-akashi/AtomREM

This issue concerns an interdisciplinary problem.

$$
\dot{X}=-\partial U(X)+\underline{W(X)}
$$

Potential force
Random force(thremal fluctuation) $\propto T^{1 / 2}$

$$
\dot{X}=-\partial U(X)+\underline{W(X)}
$$

Potential force

Random force(thremal fluctuation) $\propto T^{1 / 2}$

Task: Seek the most probable escape paths.

In higher dimensions . . .

In higher dimensions . . .

we usually cannot execute exhaustive search.
-Only local info of U is available.
-Even if we have analytic expression of U, we cannot locate the escape paths.

$$
\dot{X}=-\partial U(X)+W(X)
$$

Numerical simulation of the Langevin mechanics

Low temperature (fluctuation)
Traverse rarely occurs.

High temperature
The system is broken, and/or the path information is lost.

$$
\dot{X}=-\partial U(X)+W(X)
$$

Numerical simulation of the Langevin mechanics

Low temperature (fluctuation)
Traverse rarely occurs.

High temperature
The system is broken, and/or the path information is lost.

Protein folding, molecular reaction, impurity migration, collapse of metastable phases, . . .

$$
\dot{X}=-\partial U(X)+W(X)
$$

Numerical simulation of the Langevin mechanics

Low temperature (fluctuation)
Traverse rarely occurs.

High temperature
The system is broken, and/or the path information is lost.

Protein folding, molecular reaction, impurity migration, collapse of metastable phases, . . ., and also nuclear fission.

A common thread

Fission dynamics by stochastic treatment Y. Abe et al., Phys. Rep. 275, 49 (1996)

$$
\dot{X}=-\partial U(X)+W(X)
$$

Diffusion force (from internal particles)
$U=U\left(\chi_{1}, \chi_{2}, \chi_{3}, \ldots\right)$
Macroscopic shape parameters

A common thread

Fission dynamics by stochastic treatment Y. Abe et al., Phys. Rep. 275, 49 (1996)

$$
\dot{X}=-\partial U(X)+W(X)
$$

Diffusion force (from internal particles)
$U=U\left(\chi_{1}, \chi_{2}, \chi_{3}, \ldots\right)$
Macroscopic shape parameters
P. Moeller et al., PRC 79, 064304 (2009);
J. Randrup and P. Moeller, PRL 106, 132503(2011).

Typical strategy:
Define reaction coordinate (RC) and execute any biased dynamics

Energy

(plausible) low dimensional RC space

Typical strategy: Define reaction coordinate (RC) and execute any biased dynamics

Potential bias:

Add artificial potential as a function of RCs
-Umbrella sampling G. Torrie and J. Valleau: J. Comput. Phys. 23 (1977) 187
-Metadynamics A. Laio and M. Parrinello: Proc. Natl. Acad. Sci. USA 99 (2002) 12562
-Hyperdynamics A. F. Voter: J. Chem. Phys. 106 (1997) 4665
-Anharmonic downward distortion following O. Maeda et al., Chem. Phys. Lett., 384, 277 (2004).

Sampling bias:
Selectively accept the trials which proceed in the desired RC direction
-Forward flux sampling R. J. Allen et al. : Phys. Rev. Lett. 94 (2005) 018104
-Parallel cascade sampling R. Harada and A. Kitao: J. Chem. Phys. 139 (2013) 035103

Problems:
-Warping of the trajectory due to the artificial potential
-Unintuitive appropriate RCs

Thermally driven potential escape

Typical strategy:
Define reaction coordinate (RC) and execute any biased dynamics

```
Potential bias:
Add artificial potential as a function of RCs
-Umbrella sampling G. Torrie and J. Valleau: J. Comput. Phys. 23 (1977)}18
-Metadynamics A. Laio and M. Parrinello: Proc. Natl. Acad. Sci. USA 99 (2002)}1256
-Hyperdynamics A. F. Voter: J. Chem. Phys. }106\mathrm{ (1997) }466
-Anharmonic downward distortion following O. Maeda et al., Chem. Phys. Lett., 384, 277 (2004),
Sampling bias:
Selectively accept the trials which proceed in the desired RC direction
-Forward flux sampling R. J. Allen et al. : Phys. Rev. Lett. 94 (2005)018104
-Parallel cascade sampling R. Harada and A. Kitao: J. Chem. Phys. 139 (2013)}03510
```

Is any RC- and artificial potential-free algorithm possible?

Langevin molecular mechanics (overdamped)

$$
\dot{X}=-\partial U(X)+\underline{W(X)}
$$

Potential force
Random force(thremal fluctuation) $\propto T^{1 / 2}$

Langevin description: Eq. of motion of variables with stochastic force

Strong force is rarely exerted such that the potential barrier is overcome

Why is the escape rare?

\longrightarrow Langevin description: Eq. of motion of variables with stochastic force

Equiv.

Strong force is rarely exerted such that the potential barrier is overcome

Fokker-Planck description: Deterministic Eq. of motion of distribution of variables

$$
\partial_{t} P(X, t)=\hat{L} P(X, t)
$$

Distribution amplitude is infinitesimally small near the potential barrier

Fokker-Planck description: Deterministic Eq. of motion of distribution of variables

$$
P(\mathrm{x}, 0)=\delta\left(x-x_{0}\right)
$$

Fokker-Planck description: Deterministic Eq. of motion of distribution of variables

$$
P(\mathrm{x}, 0)=\delta\left(x-x_{0}\right)
$$

Long time limit

$$
P(X, t \rightarrow \infty) \propto \exp (-\beta U(X))
$$

Nonzero component up the potential \rightarrow extract it!

Ornstein-Uhlenbeck process

$$
\partial_{t} p(x, t)=\frac{1}{\Gamma} \partial_{x}\left(\alpha x+k_{B} T \partial_{x}\right) p(x, t)
$$

$$
P(x, 0)=\delta\left(x-x_{0}\right)
$$

$$
U(x)=\alpha x^{2} / 2
$$

Ornstein-Uhlenbeck process

$$
\partial_{t} p(x, t)=\frac{1}{\Gamma} \partial_{x}\left(\alpha x+k_{B} T \partial_{x}\right) p(x, t)
$$

$$
P(x, 0)=\delta\left(x-x_{0}\right)
$$

General solution

$$
\begin{aligned}
& p(x, t)=\sqrt{\frac{\alpha}{2 \pi k_{\mathrm{B}} T\left(1-s^{2}\right)}} \exp \left[-\frac{\alpha\left(x-s x_{0}\right)^{2}}{2 k_{\mathrm{B}} T\left(1-s^{2}\right)}\right] \\
& s \equiv s(t)=\exp (-\alpha t / \Gamma)
\end{aligned}
$$

Ornstein-Uhlenbeck process

$$
\partial_{t} p(x, t)=\frac{1}{\Gamma} \partial_{x}\left(\alpha x+k_{B} T \partial_{x}\right) p(x, t)
$$

$$
P(x, 0)=\delta\left(x-x_{0}\right)
$$

$$
U(x)=\alpha x^{2} / 2
$$

General solution

$$
\begin{aligned}
& p(x, t)=\sqrt{\frac{\alpha}{2 \pi k_{\mathrm{B}} T\left(1-s^{2}\right)}} \exp \left[-\frac{\alpha\left(x-s x_{0}\right)^{2}}{2 k_{\mathrm{B}} T\left(1-s^{2}\right)}\right] \\
& s \equiv s(t)=\exp (-\alpha t / \Gamma)
\end{aligned}
$$

Distribution center

 ${ }^{\sim} \mathrm{O}(t)$Distribution width
${ }^{\sim} \mathrm{O}\left(t^{1 / 2}\right)$
In small t diffusion >> potential drift $=$ leakage of $p(x, t)$ up the potential $U(x)$

Ornstein-Uhlenbeck process

Center ${ }^{\sim}(t)$
General solution

$$
\begin{aligned}
& p(x, t)=\sqrt{\frac{\alpha}{2 \pi k_{\mathrm{B}} T\left(1-s^{2}\right)}} \exp \left[-\frac{\alpha\left(x-s x_{0}\right)^{2}}{2 k_{\mathrm{B}} T\left(1-s^{2}\right)}\right] \\
& s \equiv s(t)=\exp (-\alpha t / \Gamma)
\end{aligned}
$$

In small t diffusion >> potential drift $=$ leakage of $p(x, t)$ up the potential $U(x)$

Ornstein-Uhlenbeck process

Center ${ }^{\sim}$ (t)
General solution

$$
\begin{aligned}
& p(x, t)=\sqrt{\frac{\alpha}{2 \pi k_{\mathrm{B}} T\left(1-s^{2}\right)}} \exp \left[-\frac{\alpha\left(x-s x_{0}\right)^{2}}{2 k_{\mathrm{B}} T\left(1-s^{2}\right)}\right] \\
& s \equiv s(t)=\exp (-\alpha t / \Gamma)
\end{aligned}
$$

In small t diffusion >> potential drift $=$ leakage of $p(x, t)$ up the potential $U(x)$
$\longrightarrow p(x, t) \propto p_{\text {eq }}(x) q(x, t)$
Large at large $-U(x)$ region, small at small- $U(x)$ region.

Ornstein-Uhlenbeck process

General solution

$$
\begin{aligned}
& p(x, t)=\sqrt{\frac{\alpha}{2 \pi k_{\mathrm{B}} T\left(1-s^{2}\right)}} \exp \left[-\frac{\alpha\left(x-s x_{0}\right)^{2}}{2 k_{\mathrm{B}} T\left(1-s^{2}\right)}\right] \\
& s \equiv s(t)=\exp (-\alpha t / \Gamma) \\
& p(x, t)=\exp \left[-(1-\delta) U(x) / k_{\mathrm{B}} T\right] q(x, t)
\end{aligned}
$$

Ornstein-Uhlenbeck process

General solution

$$
\begin{aligned}
& p(x, t)=\sqrt{\frac{\alpha}{2 \pi k_{\mathrm{B}} T\left(1-s^{2}\right)}} \exp \left[-\frac{\alpha\left(x-s x_{0}\right)^{2}}{2 k_{\mathrm{B}} T\left(1-s^{2}\right)}\right] \\
& s \equiv s(t)=\exp (-\alpha t / \Gamma) \\
& p(x, t)=\exp \left[-(1-\delta) U(x) / k_{\mathrm{B}} T\right] q(x, t)
\end{aligned}
$$

$$
q(x, t)=C(t) \exp \left[-\frac{\left\{x-x_{\max }(\delta, s)\right\}^{2}}{2 \sigma^{2}(\delta, s)}\right]
$$

q-center
$x_{\max }(\delta, s)=x_{0} \frac{s}{\delta+(1-\delta) s^{2}}$
q-width

$$
\sigma^{2}(\delta, s)=\frac{k_{\mathrm{B}} T}{\alpha} \frac{1-s^{2}}{\delta+(1-\delta) s^{2}}
$$

Ornstein-Uhlenbeck process

General solution

$$
\begin{aligned}
& p(x, t)=\sqrt{\frac{\alpha}{2 \pi k_{\mathrm{B}} T\left(1-s^{2}\right)}} \exp \left[-\frac{\alpha\left(x-s x_{0}\right)^{2}}{2 k_{\mathrm{B}} T\left(1-s^{2}\right)}\right] \\
& s \equiv s(t)=\exp (-\alpha t / \Gamma) \\
& p(x, t)=\exp \left[-(1-\delta) U(x) / k_{\mathrm{B}} T\right] q(x, t)
\end{aligned}
$$

q goes up the surface if $x_{0} \gg T^{1 / 2}$

$q(x, t)$ on high dimensional potential surfaces

Put at the "valley line", q goes upward the valley \rightarrow optimum escape to the saddle point?

RA and Y. S. Nagornov, J. Phys. Soc. Jpn. 87, 063801 (2018);

Stochastic equation of x for $q(x, t)$

Langevin eq. for P

$$
\dot{X}=-\partial U(X)+W(X)
$$

Langevin(-like) eq. for Q ?

Fokker-Planck eq. for P

$$
\partial_{t} P(X, t)=\hat{L} P(X, t)
$$

$F P(-l i k e)$ eq. for Q ?
$\partial_{t} Q(X, t)=\hat{L}^{\prime} Q(X, t)$

$$
P(X, t)=\begin{gathered}
\text { transformation } \\
\exp \left[-V(X) / k_{\mathrm{B}} T\right] Q(X, t)
\end{gathered}
$$

Master equation for $q(x, t)$

Giardina, Kurchan, Lecomte, and Tailleur, J. Stat. Phys. 145 (2011) 787

$$
\begin{aligned}
& N \text {-dim Fokker-Planck (Smoluchowski) equation } \\
& \left\lvert\, \partial_{t} p(\mathbf{x}, t)=\frac{1}{\Gamma}\left[\partial_{i}\left(\partial_{i} U(\mathbf{x})\right)+k_{\mathrm{B}} T \partial_{i}^{2}\right] p(\mathbf{x}, t)\right.
\end{aligned}
$$

Master equation for $q(x, t)$

Giardina, Kurchan, Lecomte, and Tailleur, J. Stat. Phys. 145 (2011) 787
N-dim Fokker-Planck (Smoluchowski) equation

$$
\partial_{t} p(\mathbf{x}, t)=\frac{1}{\Gamma}\left[\partial_{i}\left(\partial_{i} U(\mathbf{x})\right)+k_{\mathrm{B}} T \partial_{i}^{2}\right] p(\mathbf{x}, t)
$$

$$
p(\mathbf{x}, t)=C(t) \exp \left[-\underline{\left.\left.V(\mathbf{x}) / k_{\mathrm{B}} T\right] \underline{q(\mathbf{x}, t)}, \underline{x}\right)}\right.
$$

Normalization factor

Biasing potential biased distribution (generalization of U) (by def. positive definite)

Master equation for $q(x, t)$

Giardina, Kurchan, Lecomte, and Tailleur, J. Stat. Phys. 145 (2011) 787

N -dim Fokker-Planck (Smoluchowski) equation

$$
\partial_{t} p(\mathbf{x}, t)=\frac{1}{\Gamma}\left[\partial_{i}\left(\partial_{i} U(\mathbf{x})\right)+k_{\mathrm{B}} T \partial_{i}^{2}\right] p(\mathbf{x}, t)
$$

$$
p(\mathbf{x}, t)=C(t) \exp \left[-V(\mathbf{x}) / k_{\mathrm{B}} T\right] \underline{q(\mathbf{x}, t)}
$$

Normalization factor

Biasing potential (generalization of U) (by def. positive definite)

Master equation for q

$$
\begin{aligned}
& \partial_{t} q(\mathbf{x}, t)=\frac{1}{\Gamma}\left\{\partial_{i}\left[\partial_{i}(U(\mathbf{x})-2 V(\mathbf{x}))\right]+k_{\mathrm{B}} T \partial_{i}^{2}\right\} q(\mathbf{x}, t)+\frac{1}{\Gamma}\left(F(\mathbf{x})-\langle F\rangle_{q}\right) q(\mathbf{x}, t) \\
& F(\mathbf{x})=\partial_{i}^{2} V-\beta\left(\partial_{i} V\right)\left(\partial_{i}(U-V)\right) \quad\langle F\rangle_{q}=\int d \mathbf{x} F(\mathbf{x}) q(\mathbf{x}, t) \quad \partial_{t} \ln C(t)=\langle F\rangle_{q}
\end{aligned}
$$

Langevin eq. for P

$$
\dot{X}=-\partial U(X)+W(X)
$$

Fokker-Planck eq. for P

$$
\partial_{t} P(X, t)=\hat{L} P(X, t)
$$

Langevin(-like) eq. for Q ?

$$
P(X, t)=\begin{gathered}
\text { transformation } \\
=\exp \left[-V(X) / k_{\mathrm{B}} T\right] Q(X, t)
\end{gathered}
$$

Formal arbitrary function

Langevin-Fokker-Planck correspondence

\square $\stackrel{\text { L. }}$$$
d x_{i}=-\frac{\partial_{i} U(\mathbf{x})}{\Gamma}
$$$d t+\sqrt{\frac{2 k_{\mathrm{B}} T d t}{\Gamma}} W_{i}$

Random value from normal regular distribution

Stochastic equation of x for $\mathrm{q}(\mathrm{x}, \mathrm{t})$

Langevin-Fokker-Planck correspondence

Stochastic equation of x for $\mathrm{q}(\mathrm{x}, \mathrm{t})$

Langevin-Fokker-Planck correspondence

$$
\begin{aligned}
& \text { L. } \\
& d x_{i}=-\frac{\partial_{i} U(\mathbf{x})}{\Gamma} d t+\sqrt{\frac{2 k_{\mathrm{B}} T d t}{\Gamma}} W_{i} \\
& \text { Exactly derived } \\
& \text { Random value from } \\
& \text { normal regular distribution } \\
& \partial_{t} p(\mathbf{x}, t)=\hat{L} p(\mathbf{x}, t), \hat{L}=\frac{1}{\Gamma} \partial_{i}\left[\left(\partial_{i} U(\mathbf{x})\right)+k_{\mathrm{B}} T\right] \\
& \Leftrightarrow p(\mathbf{x}, t+d t)=\exp [\hat{L} d t] p(\mathbf{x}, t) \quad \text { (Integral form) } \\
& \text { Operation on } p \\
& =\text { Evolution of walkers with property } x \\
& \text { with the Langevin equation }
\end{aligned}
$$

Stochastic equation of x for $q(x, t)$

Master equation for q

$$
\left\{\begin{array}{l}
\partial_{t} q(\mathbf{x}, t)=\frac{1}{\Gamma}\left\{\partial_{i}\left[\partial_{i}(U(\mathbf{x})-2 V(\mathbf{x}))\right]+k_{\mathrm{B}} T \partial_{i}^{2}\right\} q(\mathbf{x}, t)+\frac{1}{\Gamma}\left(F(\mathbf{x})-\langle F\rangle_{q}\right) q(\mathbf{x}, t) \\
F(\mathbf{x})=\partial_{i}^{2} V-\beta\left(\partial_{i} V\right)\left(\partial_{i}(U-V)\right) \quad\langle F\rangle_{q}=\int d \mathbf{x} F(\mathbf{x}) q(\mathbf{x}, t) \quad \partial_{t} \ln C(t)=\langle F\rangle_{q}
\end{array}\right.
$$

$$
\partial_{t} q(\mathbf{x}, t)=\left[\hat{L}^{\prime}+\hat{R}\right] q(\mathbf{x}, t)
$$

Stochastic equation of x for $q(x, t)$

Master equation for q

$$
\left\{\begin{array}{l}
\partial_{t} q(\mathbf{x}, t)=\frac{1}{\Gamma}\left\{\partial_{i}\left[\partial_{i}(U(\mathbf{x})-2 V(\mathbf{x}))\right]+k_{\mathrm{B}} T \partial_{i}^{2}\right\} q(\mathbf{x}, t)+\frac{\frac{1}{\Gamma}\left(F(\mathbf{x})-\langle F\rangle_{q}\right)}{\underline{\Gamma}} q(\mathbf{x}, t) \\
F(\mathbf{x})=\partial_{i}^{2} V-\beta\left(\partial_{i} V\right)\left(\partial_{i}(U-V)\right) \quad\langle F\rangle_{q}=\int d \mathbf{x} F(\mathbf{x}) q(\mathbf{x}, t) \quad \partial_{t} \ln C(t)=\langle F\rangle_{q}
\end{array}\right.
$$

Multiply scalar $\frac{1}{\Gamma}\{F(\mathbf{x})-\langle F\rangle\}$
$\partial_{t} q(\mathbf{x}, t)=[\langle\hat{L}]+\{\hat{R}] q(\mathbf{x}, t)$
\hat{L} with $U \rightarrow U-2 V$

Stochastic equation of x for $q(x, t)$

Master equation for q

$$
\left\{\begin{array}{l}
\partial_{t} q(\mathbf{x}, t)=\frac{1}{\Gamma}\left\{\partial_{i}\left[\partial_{i}(U(\mathbf{x})-2 V(\mathbf{x}))\right]+k_{\mathrm{B}} T \partial_{i}^{2}\right\} q(\mathbf{x}, t)+\frac{1}{\Gamma}\left(F(\mathbf{x})-\langle F\rangle_{q}\right) q(\mathbf{x}, t) \\
F(\mathbf{x})=\partial_{i}^{2} V-\beta\left(\partial_{i} V\right)\left(\partial_{i}(U-V)\right) \quad\langle F\rangle_{q}=\int d \mathbf{x} F(\mathbf{x}) q(\mathbf{x}, t) \quad \partial_{t} \ln C(t)=\langle F\rangle_{q}
\end{array}\right.
$$

Multiply scalar $\frac{1}{\Gamma}\{F(\mathbf{x})-\langle F\rangle\}$
$\left.\partial_{t} q(\mathbf{x}, t)=\left[\hat{L^{\prime}}\right]+\hat{R}\right] q(\mathbf{x}, t)$
\hat{L} with $U \rightarrow U-2 V$

$$
\Leftrightarrow q(\mathbf{x}, t+d t)=\exp \left[\left(\hat{L}^{\prime}+\hat{R}\right) d t\right] q(\mathbf{x}, t)
$$

Stochastic equation of x for $q(x, t)$

Master equation for q

Multiply scalar $\frac{1}{\Gamma}\{F(\mathbf{x})-\langle F\rangle\}$

$$
\left.\partial_{t} q(\mathbf{x}, t)=\left[\widehat{L^{\prime}}\right]+\widehat{R}\right] q(\mathbf{x}, t)
$$

$$
\hat{L} \text { with } U \rightarrow U-2 V
$$

$$
\Leftrightarrow q(\mathbf{x}, t+d t)=\exp \left[\left(\hat{L}^{\prime}+\hat{R}\right) d t\right] q(\mathbf{x}, t)
$$

$$
\approx \exp \left[\hat{L}^{\prime} \frac{d t}{2}\right] \exp [\hat{R} d t] \exp \left[\hat{L}^{\prime} \frac{d t}{2}\right] q(\mathbf{x}, t)+O\left(d t^{3}\right)
$$ decomposition

$$
\begin{aligned}
& \partial_{t} q(\mathbf{x}, t)=\frac{1}{\Gamma}\left\{\partial_{i}\left[\partial_{i}(U(\mathbf{x})-2 V(\mathbf{x}))\right]+k_{\mathrm{B}} T \partial_{i}^{2}\right\} q(\mathbf{x}, t)+\frac{1}{\Gamma}\left(F(\mathbf{x})-\langle F\rangle_{q}\right) q(\mathbf{x}, t) \\
& F(\mathbf{x})=\partial_{i}^{2} V-\beta\left(\partial_{i} V\right)\left(\partial_{i}(U-V)\right) \quad\langle F\rangle_{q}=\int d \mathbf{x} F(\mathbf{x}) q(\mathbf{x}, t) \quad \partial_{t} \ln C(t)=\langle F\rangle_{q}
\end{aligned}
$$

Stochastic equation of x for $q(x, t)$

Master equation for q

$$
\left\{\begin{array}{l}
\partial_{t} q(\mathbf{x}, t)=\frac{1}{\Gamma}\left\{\partial_{i}\left[\partial_{i}(U(\mathbf{x})-2 V(\mathbf{x}))\right]+k_{\mathrm{B}} T \partial_{i}^{2}\right\} q(\mathbf{x}, t)+\frac{\frac{1}{\Gamma}\left(F(\mathbf{x})-\langle F\rangle_{q}\right) q(\mathbf{x}, t)}{\underline{\Gamma}(\mathbf{x})=\partial_{i}^{2} V-\beta\left(\partial_{i} V\right)\left(\partial_{i}(U-V)\right) \quad\langle F\rangle_{q}=\int d \mathbf{x} F(\mathbf{x}) q(\mathbf{x}, t) \quad \partial_{t} \ln C(t)=\langle F\rangle_{q}}
\end{array}\right.
$$

Multiply scalar $\frac{1}{\Gamma}\{F(\mathbf{x})-\langle F\rangle\}$

$$
\left.\partial_{t} q(\mathbf{x}, t)=\left[\hat{L^{\prime}}\right]+\widehat{R}\right] q(\mathbf{x}, t)
$$

$$
\hat{L} \text { with } U \rightarrow U-2 V
$$

$$
\Leftrightarrow q(\mathbf{x}, t+d t)=\exp \left[\left(\hat{L}^{\prime}+\hat{R}\right) d t\right] q(\mathbf{x}, t)
$$

Suzuki-Trotter decomposition

$$
\approx \frac{\exp \left[\hat{L}^{\prime} \frac{d t}{2}\right]}{\uparrow} \frac{\exp [\hat{R} d t]}{\uparrow} \frac{\exp \left[\hat{L}^{\prime} \frac{d t}{2}\right]}{\uparrow} q(\mathbf{x}, t)+O\left(d t^{3}\right)
$$

Evolve the walkers by the modified Langevin eq.

Initial distribution $\sqrt{ }$ "Entrance" to the potential valley

$$
q(\mathbf{x}, t=0)=\delta\left(\mathbf{x}-\mathbf{x}_{0}\right)
$$

$$
\begin{aligned}
& \text { Time evolution } \\
& \qquad q(\mathbf{x}, t+d t) \approx \exp \left[\hat{L}^{\prime} \frac{d t}{2}\right] \exp [\hat{R} d t] \exp \left[\hat{L}^{\prime} \frac{d t}{2}\right] q(\mathbf{x}, t)+O\left(d t^{3}\right)
\end{aligned}
$$

with $V=(1-\delta) U$ and $\delta<0.5$

Initial distribution "Entrance" to the potential valley

$$
q(\mathbf{x}, t=0)=\delta\left(\mathbf{x}-\mathbf{x}_{0}\right)
$$

Time evolution
$q(\mathbf{x}, t+d t) \approx \exp \left[\hat{L}^{\prime} \frac{d t}{2}\right] \exp [\hat{R} d t] \exp \left[\hat{L}^{\prime} \frac{d t}{2}\right] q(\mathbf{x}, t)+O\left(d t^{3}\right)$
with $V=(1-\delta) U$ and $\delta<0.5$
0 , Prepare N_{w} walkers $\left(\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \ldots \mathbf{x}^{(N \mathrm{w})}\right)$ and set all $\mathbf{x}^{(\mathrm{i})}=\mathbf{x}_{0}$

1, Evolve the walkers with modified Langevin eq by dt/2 \longleftarrow Grad. of U

2, Multiply $\exp \left[\mathrm{R}\left(\mathbf{x}^{(\mathrm{i})}\right) \mathrm{dt}\right]$ to the weights of the walkers $=$ copy walker $\mathbf{x}^{(\mathrm{i})}$ by probability $\exp \left[\mathrm{R}\left(\mathbf{x}^{(\mathrm{i})}\right) \mathrm{dt}\right]-1$; remove walker $\mathbf{x}^{(\mathrm{i})}$ by probability $1-\exp \left[\mathrm{R}\left(\mathbf{x}^{(\mathrm{i})}\right) \mathrm{dt}\right]$

3, Evolve the walkers with modified Langevin eq by dt/2

Collection of the walkers forms q tracking up the potential valley

Example: two dimensions

RA and Y. S. Nagornov, J. Phys. Soc. Jpn. 87, 063801 (2018).

$$
\begin{gathered}
U(\mathbf{X})=A\left(x^{2}+y^{2}\right)\left[\left(x^{2}-1\right)+\left(y^{2}-1\right)\right]+B \exp \left(-x^{2} y^{2}\right)+x-x y \\
(A=2.0, B=0.5)
\end{gathered}
$$

Simulation of the walkers

$$
N_{\mathrm{w}}=\sim 1000
$$

Example: two dimensions

RA and Y. S. Nagornov, J. Phys. Soc. Jpn. 87, 063801 (2018).
Time series of the walker average of (x, y)

-Paths depend on the initial position
-Accidental departure ends up to the maximum \rightarrow Practically, parameter tuning is mandatory.

$$
N_{\mathrm{w}}, \delta, T, d t
$$

Application: Lennerd-Jones clusters

$$
U=\epsilon \sum_{\langle i j\rangle}\left[-\frac{\sigma^{6}}{r_{i j}^{6}}+\frac{\sigma^{12}}{r_{i j}^{12}}\right] \quad \epsilon=6.684 ; \sigma=3.4
$$

Visualize the mean value of the walker positions.
Execute the usual Langevin equation after reaching the saddle point.
LJ_{13} (39dim.) $\quad N_{\mathrm{w}}=3200 ; \delta=0.48 ; T=0.001 ; d t=0.0005 .32000$ timestep

Reaction 1: Twist

Reaction 2: Cap-vacancy formation

Application: Lennerd-Jones clusters

Y. S. Nagornov and RA, Physica A 528, 121481 (2019).

$$
U=\epsilon \sum_{\langle i j\rangle}\left[-\frac{\sigma^{6}}{r_{i j}^{6}}+\frac{\sigma^{12}}{r_{i j}^{12}}\right]
$$

$\mathrm{LJ}_{38}(114 \mathrm{dim}.) \quad N_{\mathrm{w}}=3200 ; \delta \sim 0.48 ; T=0.0002 ; d t=0.0005 . \sim 70000$ step

Cap-vacancy formation

Summary

RA and Y．S．Nagornov，J．Phys．Soc．Jpn．87， 063801 （2018）；
Y．S．Nagornov and RA，Physica A 528， 121481 （2019）．
Transformation of the Fokker－Planck eq．
\rightarrow Reaction coordinate free escape method

$$
P(X, t)=C(t) \exp [-\beta(1-\delta) U(X)] Q(X, t)
$$

Summary

RA and Y．S．Nagornov，J．Phys．Soc．Jpn．87， 063801 （2018）；
Y．S．Nagornov and RA，Physica A 528， 121481 （2019）．
Transformation of the Fokker－Planck eq．
\rightarrow Reaction coordinate free escape method

$$
P(X, t)=C(t) \exp [-\beta(I-\delta) J(X)](X)
$$

Successful search of escape paths in more than
 100 dimensions

Summary

RA and Y．S．Nagornov，J．Phys．Soc．Jpn．87， 063801 （2018）；
Y．S．Nagornov and RA，Physica A 528， 121481 （2019）．
Transformation of the Fokker－Planck eq．
\rightarrow Reaction coordinate free escape method

$$
P(X, t)=C(t) \exp [-\beta(1-\delta) J(X)](X)
$$

Successful search of escape paths in more than
 100 dimensions

Code＂Atomistic rare event manager（AtomREM）＂is available．
Y．S．Nagornov and RA，arXiv：1907．13316；
https：／／github．com／ryosuke－akashi／AtomREM．

Summary

RA and Y．S．Nagornov，J．Phys．Soc．Jpn．87， 063801 （2018）；
Y．S．Nagornov and RA，Physica A 528， 121481 （2019）．
Transformation of the Fokker－Planck eq．
\rightarrow Reaction coordinate free escape method

$$
P(X, t)=Q(t) \exp [-\beta(1-\delta) J(X)](X)
$$

Successful search of escape paths in more than
 100 dimensions

Code＂Atomistic rare event manager（AtomREM）＂is available．
Y．S．Nagornov and RA，arXiv：1907．13316；
https：／／github．com／ryosuke－akashi／AtomREM．
Perspectives
－Free energy surfaces
－Non empirical extraction of good RCs
－．．．

