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motivation



motivation

• Inflation is now the strongest candidate of the early universe
scenario that explains current cosmological observations
consistently.
Starobinsky’80, Guth’81, Steinhardt’82, Linde’83

• Non-singular stages in the early universe cannot only be
something that replaces inflation, but also“early-time”
completion of inflation just to get rid of the initial singularity.
Vilenkin’92,
Vilenkin, Borde’93

• We address whether healthy non-singular cosmologies can be
implemented in the framework of general scalar-tensor
theories.
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Null Energy Condition



null energy condition

• If one uses general relativity to describe gravity, then an
important characteristic is the null energy condition (NEC) for
the matter energy-momentum tensor Tµν :

Tµνkµkν ≥ 0,

for every null vector kµ. Once the NEC holds in the cosmological
context, then (assuming flat spatial sections) it follows from the
Einstein equations that dH/dt ≤ 0, where H is the Hubble
parameter.

• This implies that there is a singularity in the past of the
expanding universe. Therefore, one either modifies gravity or
violates the NEC to build non-singular cosmology.

Let’s violate NEC!

NEC violation could lead to singularity-free cosmology.
However, violating the NEC in a healthymanner turns out to be chal-
lenging. 7



Horndeski theory or Generalized
Galileon



horndeski theory or generalized galileon
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horndeski theory or generalized galileon

Full lagrangian

LH = G2(ϕ, X)− G3(ϕ, X)□ϕ+
G4(ϕ, X)R+ G4,X

[
(□ϕ)2 − (∇µ∇νϕ)

2]
+ G5(ϕ, X)Gµν∇µ∇νϕ

− 1
6G5,X

[
(□ϕ)3 − 3□ϕ(∇µ∇νϕ)

2 + 2(∇µ∇νϕ)
3],

and we use

LH = G2(ϕ, X)− G3(ϕ, X)□ϕ+ G4(ϕ)R,

where
X = − 12g

µν∂µϕ∂νϕ,

□ϕ = gµν∇µ∇νϕ.
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genesis model



The ADM formalism and background
solution



the adm formalism

It is sufficient for our purposes to consider a subclass of Horndeski
Lagrangians instead of the full one (ϕ and X are covariant variables):

LH = G2(ϕ, X)− G3(ϕ, X)□ϕ+
G4(ϕ)R.

Let us rewrite this Lagrangian in terms of ADM variables t and N:

L = A2(t,N) + A3(t,N)K+ A4(K2 − K2ij) + B4(t,N)R(3).

Gauge is fixed with Y0 = const:

e−ϕ = −
√
2Y0t,

eϕ
√
Y0
X = N.
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the adm formalism

A subclass of Lagrangians in which the no-go theorem can be
avoided (Tsutomu Kobayashi 2016) has the following form:

A2 = M4
Plf−2(α+1)−δa2(N),

A3 = M3
Plf−2α−1−δa3(N),

A4 = −B4 = −MPlf−2α,

where α and δ are constant parameters satisfying:

2α > 1+ δ , δ > 0 ,

and f(t) is some function of time, which has the following
asymptotics as t→ −∞:

f ≈ −ct, c = const > 0.

The background metric reads:

ds2 = −N(t)2dt2 + a(t)2dxidxi.
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Avoiding the no-go theorem



avoiding the no-go theorem

An asymptotic solutions at early times (t→ −∞) for Hubble
parameter H, scale factor a and lapse function N are:

H ≈ χ

(−t)1+δ
,

a ≈ 1+ χ

δ(−t)δ , N→ 1 ,

χ =
2
3M

2
Pl +

c
4 (2α+ 1+ δ)MPl

4(2α+ 1+ δ)c2+δ
.

An important feature of this solution is that:

B4(t,N), A4(t,N) → 0 при t→ −∞,

and hence
G4(ϕ, X) → 0 при t→ −∞ .

16



avoiding the no-go theorem

G4(ϕ, X) is a coefficient multiplied by R so it has the sense of M2
Pl:

LH = G2(ϕ, X)− G3(ϕ, X)□ϕ+ G4(ϕ)R.

G4(ϕ, X) → 0 as t→ −∞ .

On the one hand, these are necessary conditions to avoid both ghost
and gradient instabilities. On the other hand it signalizes that the
strong coupling energy scale in this theory tends to zero as t→ −∞.
.
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strong coupling regime



The scalar sector of perturbations



the scalar sector of the metric perturbations

The perturbed metric for the scalar sector has the following form:

ds2 = −N2dt2 + γij

(
dxi + Nidt

)(
dxj + Njdt

)
,

where

N = 1+ α , Ni = ∂iβ , γij = a2e2ζδij .

Expanding the action up to the second order, one obtains the
following expression for the quadratic action in the unitary gauge
(Xian Gao et al. 2011)

S(2)α,β,ζ =

∫
Ndt ad3x

[
−3gζ

( a
N ζ̇
)2

+ cζ (∂ζ)2 − 3a2H2mαα
2 + 2gζ∂α∂ζ

+ 6a
2

N Hfααζ̇ + 2 aNgζζ∂
2β − 2aHfαα∂2β

]
.
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the scalar sector of metric perturbations

The early-time asymptotics of the latter coefficients are:

gζ ∼ cζ ∼ (−t)−2α ,
fα ∼ (−t)−2α ,
mα ∼ −(−t)−2α+δ .

The fields α and β are constraint variables. One finds them by
solving the constraint equations. The unconstrained quadratic
action is:

S(2)ζ =

∫
Ndt ad3x

(
ϵs
c2s
a2
N2 ζ̇

2 − ϵs(∂ζ)
2
)
,

ϵs =
1
aN

d
dt

(
ag2ζ
Hfα

)
− cζ , c2s =

ϵs
3gζ

(
1− gζmα

f2α

)−1
.

ϵs ∼ (−t)−2α+δ, c2s ∼ (−t)0 .
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the scalar sector of metric perturbations

To figure out the strong coupling scale in the scalar sector, we have
to go one step further and consider the cubic action.

S(3)ζ,α,β =

∫
Ndt ad3x

{
gζ
[
− 9 a

2

N2 ζζ̇
2 + 2 aN ζ̇

(
ζ∂2β + ∂iζ∂

iβ
)
− ...

...− λ3aHα2
(
3 aN ζ̇ − ∂2β

)
− λ4α

2∂2ζ +
λ5
2 (aH)2α3

}
,

where λ1, λ2, λ3, λ4, λ5 are the functions of gζ , cζfα,mα,A2,A3,A4,H
and we find their asymptotic behaviour as t→ ∞ for our model.
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the scalar sector of metric perturbations

We again solve the constraints in terms of α and β and obtain the
following expression for unconstrained cubic action:

S(3)ζ =

∫
Ndt ad3x

{
Λ1
( a
N ζ̇
)3

+ ......+ Λ18ζ∂i∂jζ∂
i∂jψ

}
,

where ψ = ∂−2(aζ̇/N); Λ1...Λ18 are functions of
gζ , cζfα,mα,A2,A3,A4,H, and hence of time t.

All of them have power-law behaviour at early times t→ −∞:

Λi ∼ (−t)xi .
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The canonically normalized field



the canonically normalized field

Every term Li in the cubic Lagrangian (i = 1, 18) can be schematically
written as follows:

Li = Λi · ζ3 · (∂t)ai · (∂)bi .

We naturally use the canonically normalised field π instead of ζ :

π =
√
ϵsζ ∝ |t|−α+δ/2ζ .

In terms of the canonically normalised field π:

Li = Λ̃i · π3 · (∂t)ai · (∂)bi ,

where
Λ̃i = Λiϵ

−3/2
s = Λi|t|−

3
2 (δ−2α) ∼ |t|xi− 3

2 (δ−2α) .
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No strong coupling condition



no strong coupling condition

By naive dimensional analysis (dimension of Λi is [Λi] = 4− a− b
and [ϵs] = 2) we immediately find that the strong coupling energy
scale associated with the term Li is:

E(i)strong ∼ Λ̃
− 1

ai+bi−1

i ∼ |t|−
xi+3α−3δ/2
ai+bi−1 .

The inverse time scale of classical evolution is

Eclass ∼
Ḣ
H ∼ |t|−1 . (2)

The condition for legitimacy of the classical treatment of the early
evolution, Eclass ≪ E(i)strong for all i reads

xi + 3α− 3
2δ < ai + bi − 1 , i = 1, 18 .
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an absence of strong coupling

No strong coupling criterion

0 < δ <
1
4 , 2− 3δ > 2α > 1+ δ.
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Results



conclusion

• We have studied the non-singular Genesis scenario in the
framework of the Horndeski theory.

• It is possible to build stable Genesis for the very early times.
• But one of the options free of instabilities at all cosmological
epochs is the one in which the early Genesis is naively plagued
with strong coupling.

• We have shown that, indeed, despite the fact that the effective
Plank mass tends to zero at early time asymptotics, the classical
analysis is legitimate in a certain range of Lagrangian
parameters.
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Outlook



the next problem

• Study all sectors of metric perturbations.
• Do a conformal transformations→ interesting to understand
the no strong coupling condition in another frame.
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no strong coupling condition

S(3)ζ =

∫
Ndt ad3x

{
Λ1
( a
N ζ̇
)3

+ ......+ Λ18ζ∂i∂jζ∂
i∂jψ

}
.

By inspecting the behaviour of Λi one finds that this combination is
the smallest for i = 1, when:

Λ1 ∼ (−t)1−2α+3δ , a1 = 3 , b1 = 0 , a1 + b1 − x1 = 2+ 2α− 3δ

0 < δ <
1
4 , 2− 3δ > 2α > 1+ δ.
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