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The overall message is

There is more to pp-waves than meets the eye



Lecture II consists of

• A brief review of the Eisenhart-Duval Lift and its uses

• Kinematic Algebras and the Galilei, Poincaré and Carroll groups

• Plane gravitational waves and the memory effect



The Eisenhart-Duval Lift



For a Natural Mechanical system ∗ :

L =
1

2
gijẋ

iẋj − V (x, t) , i = 1, . . . , n

The Eisenhart Duval-Lift is the n+2 dimensional metric

gµνdx
µdxν = 2Ldt2 +2dtds , µ = 1, . . . n, n+1, n+2

= gijdx
idxj +2dtds− V (x, t)dt2

Kµ∂µ = ∂
∂s is a null Killing vector field and since gµνKν = ∂µt it lies in

the null hypersurfaces t = constant.

∗We could include Aiẋi



Roughly speaking, t is Newtonian time and s is Carrollian time. Our

Natural Mechanical System has a Hamiltonian

H =
1

2
gijpipj + V (x, t) .

Geodesics on the Eisenhart-Duval Lift may be obtained from the super

Hamiltonian H = 1
2g

µνpµpν subject to the constraint H = 0 , i.e.

gijpipj +2ptps +2V p2s = 0 .

Setting ps− = 1, pt = −H we see that

The motions of every Natural Mechanical System are the projec-

tions on its Newtonian spacetime (whose coordinates are xi, t) of null

geodesics in its Eisenhart-Duval Lift



The correspondence works quantum mechanically:

Suppose φ satisfies

∇µ∇µφ(x, t, s) = 0

and we assume φ = e−isΨ(x, t), then we obtain the Schrödinger equa-

tion

−1

2
∇i∇iΨ+ V (x, t)Ψ = i

∂Ψ

∂t



Symmetry’s of null geodsics or wave equations on the Eisenhart-Duval

lift descend to symmetries of its Natural Mechanical System provided

they normalise the R action generated by the null Killing vector field
∂
∂s.

Conversely constants of the motion K(xi, pi) which Poisson commute

with the Hamitonian H which are polynomial in pi may be lifted to

homogeneous functions K̂(pi, ps) which correspond to Killing tensors

on the Eisenhart-Duval Lift.



Even the example gij = δij and V (x, t) = 0 is illuminating.

In the classical case the isometry group of R
n+1,1 is the Poincaré

group E(n+1,1). It descends to the Galilei group Gal(n,1) which is

the symmetry of a free particle moving in Newton-Cartan spacetime.

The quantum mechanical case is more subtle. Elements of the

Poincaré group E(n+1,1) involving s linearly induce changes of the

phase of the wave function Ψ, This leads to the Bargmann group,

the central extension of the Galilei group Gal(n,1).



Conformal transformations of the Eisenhart-Duval lift take null geod-

sics to null geodesics. The simplest case corresponds to temporal

reparametrizations t = f(t̃) and asuume gij is flat. So that

gijẋ
iẋi =

∑

a
ma|dxa|2

If xa =
√

f ′ ya.

Ṽ = f ′V (
√

f ′ ya, f) +
∑

ma|ya|2{f, t̃}



The Einsenhart-Duval metric becomes

f ′
{

gijdy
iḋi +2dt̃ds− 2Ṽ (dt̃)2

}

{f, t̃} =
f ′′′

f ′
− 3

2

(f ′′

f

)2

is the Schwarzian derivative which vanishes if f = at+b
ct+d and f ∈

SL(2,R). In general we induce an extra time dependent oscilator

contribution to the potential. If the Schwarzian derivative vanishes

the Bargman group is extended to the Schrödinger group. One may

apply this to celestial mecanics to map solutions with with a time

varying Gravitational constant to those with time independent Gravi-

tational constant. If a Newtonian Cosmological constant is constant

one induces a time independent cosmological constant. Perhaps this

has relevance to dark matter.



If gij = δij one may isometrically embed the Eisenhart-Duval Lift into

R
n+2,2 as an (n+1)-brane ZA = ZA(xi, s, t).

Zi = xi

Zn+1 =
1√
2
(tV + s+ t)

Zn+2 =
1√
2
(tV + s− t)

Zn+3 =
1√
2
(V +

1

2
t2)

Zn+4 =
1√
2
(V − 1

2
t2)

If ∇i∇iV = 0 then �ZA = 0 and therefore satisfies the brane equations

of motion. This holds for the example of celestial mechanics and

Newtonian Cosmology.



∗ †

maẍa =
∑

b 6=a

− Gmamb

|xa − xb|3
(xa − xb) .

L =
∑

a

1

2
maẋ

2
a +

1

2

∑

a 6=b

∑

b

G
mamb

|xa − xb|

xa = a(t)ra , ṙa = 0,
ä

a
= −4πGρ0

a3
.

4πGρ0mara = −
∑

b 6=a

Gmamb
(ra − rb)

|ra − rb|3
.

∗G. F. R. Ellis and G. W. Gibbons,Discrete Newtonian Cosmology, Class. Quant.
Grav. 31 (2014) 025003 [arXiv:1308.1852 [astro-ph.CO]]
†G. F. R. Ellis and G. W. Gibbons, Discrete Newtonian Cosmology: Perturbations,
Class. Quant. Grav. 32 (2015) no.5, 055001 [arXiv:1409.0395 [gr-qc]].



Kinematic Algebras and the Carroll Group



In 1967 a paper entitled “Possible Kinematics”∗ Levy-Leblond and

Bacry classified all Lie algebras up to isomorphism spanned by {J,P,K, H}.
[

J, J
]

= J,
[

J,P
]

= P,
[

J,K
]

= K,
[

J, H
]

= 0.

The simplest case is to assume that all other brackets vanish, this is

known as Static. If we demand that the boosts K are non-compact

there are 11 posibilities, among them the the Galilei group G(3,1)

and the Carroll group C(3,1). All such deformations of the Static

algebra are Wigner-Inönü contractions of the de-Sitter groups. For

Galilei the additonal non-vanishing Lie bracket Lie is
[

H,K
]

= H. For

Carroll the additonal non-vanishing Lie bracket Lie is
[

P,K
]

= H.

∗see J. Figueroa-O’Farrill, Classification of kinematical Lie algebras,
arXiv:1711.05676 [hep-th]. for a recent extension to all dimensions





Levy-Leblond had previously defined the Carroll group as the limit of

the Poincaré group as c ↓ 0 just as one may define the Galilei group

as the limit of the Poincaré group as c ↑ 0.

Carroll : ηµνdx
µdxν = −c2dt2 + dxidxj −→ dxidxi

Galilei : ηµν
∂

∂xµ
∂

∂xν
= −c−2 ∂

∂t

∂

∂t
+

∂

∂xi
∂

∂xi
−→ ∂

∂xi
∂

∂xi

From The Eisenhart-Duval lift point view C(3,1) is the subgroup

of SO(4,1) stabilizing the null hyperplane t = constant in R4,1 with

metric

gµνdx
µdxν = dx2 +2dtds



C(2,1) arises in Dirac’s Light Front quantization which uses as initial

surface a null hyperplane replacing the Euclidean group E(3) of the

more usual spacelike hyperplane used in canonical quantization. The

dynamics is then implemented by the Galileo group Gal(2,1).

As such C(2,1) plays a central rôle in high energy scattering in the

Infinite Momentum Frame. It arises as a symmetries of supergravity

solutions used in the AdS/CFT approach to CFT’s in the infinite

momentum frame. ∗

∗M. Cvetic, H. Lu and C. N. Pope, Space-times of boosted p-branes and CFT
in infinite momentum frame, Nucl. Phys. B 545 (1999) 309 [hep-th/9810123].
D. Brecher, A. Chamblin and H. S. Reall, AdS / CFT in the infinite momentum
frame,’ Nucl. Phys. B 607 (2001) 155 doi:10.1016/S0550-3213(01)00170-5 [hep-
th/0012076]. H. Kim, ‘Supergravity duals to the noncommutative N=4 SYM
theory in the infinite momentum frame, Phys. Rev. D 68 (2003) 066007 [hep-
th/0306124].



Plane Gravitational Waves



If gij = δij, the Eisenhart-Duval metric is what is known as a pp-wave

or Brinkmann wave. If the potential V (x, t) is harmonic in x but with

arbitrary dependence on t it is Ricci flat. All local invariants vanish

and thus it is a solution of almost any theory of gravity without a

cosmological term constructed from just a metric tensor gµν. The

linearity of the harmonic condition reflects the Kerr-Schild structure.

Plane gravitational waves are a special case

gµνdX
µdXν = dXidXi +2dUdV +K(Xi, U)dU2

In the physical dimension,

K = Kij(U)XiXj = A+(U)
(

(X1)2 − (X2)2
)

+2A×(U)X1X2



The coordinates (Xi, U, V ) are global. The null Killing vector ∂
∂V is co-

variant constant, lies in the wave fronts U = constant and generates

Carrollian time translations. There are in general four additional sym-

meries. To reveal them we pass to Baldwin-Jeffery-Rosen coordinates

(xi, u, v) which are always somewhere singular.

Xi = P i
jx

j , U = u , V = v − 1

4
xiȧ(u)ijx

j , a = P tP .

gµνdx
µdxν = a(u)ijdx

idxj +2dudv

Ṗ = KP , P tṖ = Ṗ tP , L = ȧ−1a .

K = P(L̇+
1

2
L̇2)P−1 , Tr(L̇+

1

2
L̇2) = 0 .



∗ Transverse translations and null translations mutually commute.

The full set of isometries act multiply transitively on the wave fronts

and are

xi → xi +H(u)ci , v → v − bix
i − 1

2
biHijbj + f , H(u) =

∫ u
a(t)−1dt

which make up the Carroll group in 2+1 dimensions with the rotations

discarded C(2,1) → G → O(2), C(2,1)/G = O(2).

If a = 1 we recover the Carrol group For circularly polarized gravita-

tional waves the is an additional screw symmetry.

∗C. Duval, G. W. Gibbons, P. A. Horvathy and P.-M. Zhang, Carroll symme-
try of plane gravitational waves, Class. Quant. Grav. 34 (2017) no.17, 175003
doi:10.1088/1361-6382/aa7f62 [arXiv:1702.08284 [gr-qc]].



The timelike geodesics of plane gravitational waves are most readi-

ily solved, using the conserved quantities arising from the isometry

group in BJR coordinates. They may then be translated back to

the more physical B cordinates. In practice this means solving the

Sturm-Liouvile equations for P i
j(U) which typically can only be done

numerically.

The main cases are

• Monochromatic Gravitational Waves including Plane Polarised Grav-

itational Waves and Circularly Polarised Gravitational Waves.

• Sandwich Waves for which Kij(U) = 0 outside a finite interval of

time U .



Sandwich Waves represent a pulse of gravitational radiation as might

arise from black hole mergers. Either side of the pulse is flat Minkowki

spacetime. This is manifest in B coordinates but not in BJR coordi-

nates. This fact gives rise to the Memory Effect

∗ .
∗P. M. Zhang, M. Elbistan, G. W. Gibbons and P. A. Horvathy, SturmLiouville and
Carroll: at the heart of the memory effect,” Gen. Rel. Grav. 50 (2018) no.9, 107
doi:10.1007/s10714-018-2430-0 [arXiv:1803.09640 [gr-qc]].

P. M. Zhang, C. Duval, G. W. Gibbons and P. A. Horvathy, Velocity Mem-
ory Effect for Polarized Gravitational Waves,” JCAP 1805 (2018) no.05, 030
doi:10.1088/1475-7516/2018/05/030 [arXiv:1802.09061 [gr-qc]].
P.-M. Zhang, C. Duval, G. W. Gibbons and P. A. Horvathy, Soft gravitons and the
memory effect for plane gravitational waves, Phys. Rev. D 96 (2017) no.6, 064013
doi:10.1103/PhysRevD.96.064013 [arXiv:1705.01378 [gr-qc]].
P.-M. Zhang, C. Duval, G. W. Gibbons and P. A. Horvathy, The Mem-
ory Effect for Plane Gravitational Waves, Phys. Lett. B 772 (2017) 743
doi:10.1016/j.physletb.2017.07.050 [arXiv:1704.05997 [gr-qc]].



Noether’s theorem implies that in BJR coordinates

aij
dxj

du
= pi , (1)

where pi is an constant momentum . if aij = δij befoe the pulse it will

be time dependent after the pulse. In fact two particles at relative

rest before the pulse will move with non-zero relative velocity after

the pulse This is clear in B coordinates. P i
j(U) determines a local

diffeomorphism of two coordinate patches of Minkowski spacetime.

The memory effect was first discovered in the days of Weber-type

Bar Detectors for Gravitational Radiation





From: ∗ we take the following equations :

d2x

dt2
+

ω0

Q

dx

dt
+ ω2

0x = −c2lR1010

Ri0j0 =
G

3r

d4Dij

dt4
(t− r) ,

∗G. W. Gibbons and S. W. Hawking, Theory of the detection of short bursts of
gravitational radiation, Phys. Rev. D 4 (1971) 219



We deduced that if the quadrupole moment is initially and finally time

independent, as might be expected for the gravitational collapse of a

massive star, then three integrals of the signal must vanish

∫ tf

ti
dt

∫ t

ti
dt′

∫ t′

ti
dt′′R0i0j(t

′′) = 0,

In which case the signal must change sign at least three times. We

provided a sketch of a signal which changed sign exactly three times

which appears to have mislead some people to think that we had

claimed that it must always change sign three times. By contrast for

what is now called a flyby we pointed out that only
∫ tf

ti
dtR0i0j(t)

need vanish. We did not labour the point of how this might affect the

displacement x(t) of the detector after a pulse like signal has passed.



Later Zeldovich and Polnarev ∗ were considering likeley signals from

dense clusters of massive stars or collapsed objects noted that that

after a pulse has passed,according to linear theory the metric pertur-

bation hij satisfies

d2hij

dt2
= 0 .

whose solution is

hij = h1ijt+ h0ij , h1ij, h
0
ij constant

∗Ya. B. Zel’dovich and A. G. Polnarev, “Radiation of gravitational waves by a
cluster of superdense stars,” Astron. Zh. 51, 30 (1974) [Sov. Astron. 18 17
(1974)].



and stated that:

. . . another, nonresonance, type of detector is possible, con-

sisting of two noninteracting bodies (such as satellites). the

values of hij after the encounter of two objects differs fromthe

value before the encounter. As a result the distance between

a pair of free bodies should change, and in principle this ef-

fect might possibly serve as a nonresonance detector. [ . . . ]

One should note that although the distance between the free

bodies will change, their relative velocity will actually become

vanishingly small as the flyby event concludes.





Subsequently ∗ Braginsky and Grischuk dubbed this the Memory effect

∗V B Braginsky and L P Grishchuk, Kinematic resonance and the memory effect in
free mass gravitational antennas, Zh. Eksp. Teor. Fiz. 89 744-750 (1985) [Sov.
Phys. JETP 62, 427 (1985)].



Consideration is given to two effects in the motion of free

masses subjected to gravitational waves, kinematic resonance

and the memory effect. In kinematic resonance, a system-

atic variation in the distance between the free masses occurs,

provided the masses are free in a suitable phase of the gravita-

tional wave. In the memory effect, the distance between a pair

of bodies is different from the initial distance in the presence

of a gravitational radiation pulse. Some possible applications

[ . . . ] to detect gravitational radiation . . .

Actually, as we have seen the distance can be expected to be time

dependent in general.





Gravitational waves as optical media In a curved spacetime Maxwell’s

equations are

dF = 0 , dG = 0

where

F =
1

2
Fµνdx

µ ∧ dxν , G =
1

2
Gµνdx

µ ∧ dxν ,

and if

F = −Eidt ∧ dxi +
1

2
ǫijkBkdx

i ∧ dxj

G = Hidt ∧ dxi +
1

2
ǫijkDkdx

i ∧ dxj

they then become

∇ ·D = 0 , ∂tB = −∇× E ,

∇ ·B = 0 , ∂tD = ∇×H .



The constitutive relation is G = ⋆F , i.e.

Di = ǫijEj + αijHj , Bi = µijHj + αjiEj

where ǫij, the permitivity tensor, and µij the permeablity tensor are

µij = ǫij = −
√
−g

gij

g00
, αij = −βij = ǫijk

g0k
g00

.

In BJR coordinates we find αij = 0 the permeability depends only on

u.

ǫij =
√
det aa−1

ij , i = 1,2, ǫ33 =
√
det a .



Plane gravitational wave are the Eisenhart-Duval lift of two oscillators,

one with positive time dependent freqency squared and the other with

negative time dependent freqency squared. There is an enormous

literature on such systems. In the present setting this makes use of

coordinate transformations, especially conformal transformations to

reduce the problem to simpler, sometimes time independent, problems



Monochromatic plane polarised waves : Xi(U) behave like charged

particles (ions) in a Paul Trap.

Nonochromatics Circularly polarised waves : Xi(U) behave like ions

in a modified version of a Penning Trap. ∗.

∗P.-M. Zhang, M. Cariglia, C. Duval, M. Elbistan, G. W. Gibbons and
P. A. Horvathy, Ion Traps and the Memory Effect for Periodic Gravitational
Waves, Phys. Rev. D 98 (2018) no.4, 044037 doi:10.1103/PhysRevD.98.044037
[arXiv:1807.00765 [gr-qc]].



Conclusion

William Blake once wrote

To see a World in a Grain of Sand And a Heaven in a Wild

Flower Hold Infinity in the palm of your hand And Eternity in

an hour

Auguries of Innocence

I hope I have convinced you that the similar sentiments may be applied

to pp-waves.



Thank you for your attention


