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Generation and evolution of perturbations

quantum fluctuations
in clock

horizon

classical
perturbation

in clock

perturbation
in amount of

expansion

curvature
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density perturbations

galaxies, etc

2

Everything seems to be clearly understood
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Quantum aspects of perturbations?

If the inflationary picture is the case...

Quantum-to-classical transition?

Quantum signature of perturbations?

Effective theory description?

Important to test the inflationary paradigm
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Why tensor perturbations?

Persistent

Well defined even during dS

(For pure tensor) free from gauge

How pure tensor modes behave
1 on super-horizon scales,
2 keeping quantum nature?
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System and environment

𝐿𝐿~𝐻𝐻−1
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Lindblad equation

𝑑𝑑𝜌𝜌red
𝑑𝑑𝜏𝜏

= −𝑖𝑖 𝐻𝐻,𝜌𝜌red −
1
2
� 𝐿𝐿𝜇𝜇

†𝐿𝐿𝜇𝜇𝜌𝜌red + 𝜌𝜌red𝐿𝐿𝜇𝜇
†𝐿𝐿𝜇𝜇 − 2𝐿𝐿𝜇𝜇𝜌𝜌red𝐿𝐿𝜇𝜇

†

Unitary evolution: von Neumann equation

Non-unitary evolution: Lindblad operators
1 Due to the interaction between system and environment

Lµ ∼
〈
E f

∣∣∣Hint

∣∣∣Ei

〉
2 Exponential decay of (some components of) ρred
3 Effective theory description
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Pure tensor interaction

S(t)
3 =

∫
dτd3xa2m2

Pl

[
− 1

2
hijh

′
jkh′

ki −2H hijhjkh′
ki +2

(
1− ε

3

)
hijhjkhki

+hij

(
1

4
hkl,ihkl,j +

1

2
hik,lhjl,k −

3

2
hik,lhjk,l

)]

1 Most terms are not slow-roll suppressed

2 Pol tensor products with different combinations of indices
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Cubic interaction Hamiltonian

Hint,I (τ) =
∫

d3k1

(2π)3

d3k2

(2π)3

d3k3

(2π)3 (2π)3δ(3)(k123)
∑

λ1,λ2,λ3

×
{

h0(τ)aλ1

k1
aλ2

k2
aλ3

k3
(τ0)+h1(τ)

[
aλ1†
−k1

aλ2

k2
aλ3

k3
(τ0)+2 perm

]
+h.c.

}

Coefficients at τ, operators at τ0

Sandwiched between |0〉0, some operators directly work

System-environment splitting∫
d3k

(2π)3 ak =
∫

k∈kS

d3k

(2π)3 ak∈kS︸ ︷︷ ︸
On |0〉S ≡|0〉k<aH at τ0

+
∫

k∈kE

d3k

(2π)3 ak∈kE︸ ︷︷ ︸
On |0〉E≡|0〉k>aH at τ0
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Pointer basis

Quote from W. H. Zurek (1981):

... observable of the measured quantum system can be
considered “recorded” by the apparatus. The basis that
contains this record – the pointer basis of the apparatus –
consists of the eigenvectors of the operator which commutes
with the apparatus-environment interaction Hamiltonian.

dρred

dτ

∣∣∣∣
ab

≡
〈

a

∣∣∣∣dρred

dτ

∣∣∣∣b〉
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Squeezed state as the pointer basis

Lindblad equation can be schematically written as

dρred

dτ
∼ ∑

m,n
ρmnU0a†

1a†
2 · · ·a†

m|0〉S 〈0|S a1′a2′ · · ·anU†
0

Seems natural basis:
{

U0|0〉S ,U0a†
1|0〉S ,U0a†

1a†
2|0〉S · · ·

}

We do not directly observe primordial perturbations

CBB
` ∼

∫
(transfer function)×Ph(k)

Classicality not on individual solution but on stat properties
(Guth & Pi 1985, Polarski & Starobinsky 1996)
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Cubic interactions

𝐿𝐿 = 1/(𝑎𝑎𝑎𝑎)

Sub-horizon 𝑘𝑘𝐸𝐸 ≳ 𝑎𝑎𝐻𝐻 Super-horizon 𝑘𝑘𝑆𝑆 ≲ 𝑎𝑎𝐻𝐻

All modes are in the environment or system sector

2 system and 1 environment: k1 ≈ k2 and |k3| ≈ 2|k1|
1 system and 2 environment: k1 ≈−k2 and k3 ¿ k1 ≈ k2
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Triangular contributions

EEE : 0 from the beginning

S S S : Absorbed into unitary evolution

ES S : Flattened triangle
No clear distinction (we want kE À aH and kS ¿ aH)
Disappear in the enfolded limit

(S S S )sq, (EES )sq: Squeezed triangle
At least O

(
q2/H 2

)
Disappear at leading order

EES : Only non-zero contribution
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Matrix notation of Lindblad equation

dρred

dτ
=



E00 0 E02 0 0 0 0
0 E11 0 0 0 0 0
E20 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


+h.c.
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Conclusions

TO BE CONCLUDED LATER, BUT SOME PRELIMINARY REMARKS:

1 Studying quantum origin may be relevant

2 Pure tensor perturbations are of physical interest
3 Non-linear evolution allows system-environment interactions

1 Lindblad equation: evolution of reduced density matrix
2 Exponential decay of (some components of) ρred
3 (Probably) no remaining quantum nature in gravitational sector
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