THE EFFECT OF KOZAI-LIDOV MECHANISM ON PERIOD SHIFT AND GRAVITATIONAL WAVEFORM ONGOING WORK

PRITI GUPTA (WASEDA UNIVERSITY)

COLLABORATORS:

HARUKA SUZUKI (WASEDA)

HIROTADA OKAWA (WASEDA, YITP)

KEI-ICHI MAEDA (WASEDA)

12 February @ apwsw2019,YITP

INTRODUCTION

First Indirect Observation Hulse Taylor Binary

Russell Hulse and Joseph Taylor, showed that

- over time, the neutron stars were gradually spiraling towards each other.
- energy loss agreed with the predicted energy that would be radiated by gravitational waves.

Russel Alan Hulse

Joseph Hooton Taylor

Nobel Prize 1993

INTRODUCTION

First Direct Observation GWI50914

The waveform, detected by both LIGO observatories, matched the predictions of general relativity for a gravitational wave emanating from the inward spiral, merger of a pair of black holes and the subsequent "ringdown" of the single resulting black hole.

Rainer Weiss Barry Barish Kip Thorne Nobel Prize 2017

MOTIVATION

KOZAI - LIDOV MECHANISM

Dynamical phenomenon affecting the orbit of a binary system perturbed by a distant third body under certain conditions.

Hierarchical triplet : Binary + tertiary companion

Newtonian
$$\Theta = \sqrt{1 - e_{in}^2} \cos I = const.$$

Leads to a periodic exchange between eccentricity and inclination.

Model + Timescales

Hierarchical triplet : Binary + tertiary companion

$$t_{KL} \simeq \frac{16}{15} \frac{a_{\text{out}}^3}{a_{\text{in}}^{3/2}} \sqrt{\frac{m_1}{Gm_3^2} (1 - e_{\text{out}}^2)^{\frac{3}{2}}}$$

Kozai-Lidov Timescale

Time Scales for our Model

 $P_{in} = 0.258 \ days$ $P_{out} = 3.334 \ days$ $\tau_{KL} \sim 66 \ days$ $\tau_{merger} \sim 10^9 years$

 $P_{in} \ll P_{out} \ll \tau_{KL} \ll \tau_{merger}$

Orbit Evolution Method

1st order post-Newtonian equation of motion Einstein-Infeld-Hoffmann equation

Lorentz & Droste,, 1917

integrate with 6th order Implicit Runge-Kutta method **Xno GW back reaction**

Periastron Time Shift

We define the periastron time shift by $\Delta_p = T_N - P_0 N$

where T_N is the *N*-th periastron time.

Assuming the condition $|\int_0^t dt' \dot{P}(t')| \ll P_0$ as emission energy of GWs is not large.

We approximate
$$\Delta_p$$
 as $\Delta_p \approx \frac{1}{P_0} \int_0^{T_N} dt \int_0^t dt' \dot{P}(t')$

We then find,

$$\Delta_p = -\frac{192\pi}{5P_0} \left(\frac{G}{c^3} \frac{2\pi}{P_0}\right)^{5/3} m_1 m_2 \left(m_1 + m_2\right)^{-1/3} \int_0^{T_N} dt \int_0^t dt' \left[1 - \bar{e}^2(t')\right]^{-7/2} \left[1 + \frac{73}{24} \bar{e}^2(t') + \frac{37}{96} \bar{e}^4(t')\right]$$

 $\overline{\mathbf{e}}(t)$ is the eccentricity averaged over one orbital period of inner binary.

Gravitational Waveform

We use Quadruople formula for the evolution of Gravitational Waveform.

$$[h_{ij}]_{quad} = \frac{1}{r} \frac{2G}{c^4} \ddot{Q}_{ij} \left(t - \frac{r}{c}\right)$$

$$\begin{split} Q^{ij} &= M^{ij} - \frac{1}{3} \delta^{ij} M_{kk} = \int d^3 x \, \rho(t,x) (x^i x^j - \frac{1}{3} r^2 \delta^{ij}) \\ Q_{ij} \text{ is the Quadrupole tensor.} \\ M_{ii} \text{ is the second mass moment.} \end{split}$$

Energy spectra is evaluated as

$$\frac{dE}{d\omega} = \frac{G \,\omega^6}{5 \,\pi \,c^5} \,\tilde{Q}_{ij} \,(\omega) \tilde{Q}^*_{ij}(\omega)$$

Results

Result – Periastron Shift

Result – Gravitational Waveform

Result – Energy Spectra

SUMMARY AND FUTURE WORK

- ✓ Kozai-Lidov effect can be seen in the time evolution of the cumulative shift of periastron time and the waveform of the inner binary in a hierarchical triplet.
- \checkmark Due to high eccentricity, we can see many harmonics in the energy spectra of the waveform.
- \checkmark The timescale of this effect corresponds to the Kozai-Lidov timescale.

> Now we are doing parameter search (for detectable range) and consider more realistic models.

> Future Task : Including back reaction effect in orbital evolution.