Hunting for Statistical Anisotropy in Tensor Modes with B-mode Observations

Takashi Hiramatsu

Rikkyo University

Collaboration with

Tomohiro Fujita (Kyoto), Ippei Obata (ICRR), Shuichiro Yokoyama (Nagoya)

"Hunting for Statistical Anisotropy in Tensor Modes with B-mode observations" PRD 98 (2018) 083522 [arXiv:1808.08044]

B-mode observations

The remnant of Big-Bang, blackbody radiation with T = 2.7255 K

- Temperature/E-mode fluctuations have provided fruitful information on inflation with COBE/WMAP/Planck etc.
- Next target is **B-mode fluctuation** with LiteBIRD/CMB-S4 etc.

Primordial GWs

From the future B-mode observations, can we know how the GW was generated ? Of course, inflation, but any others ... ?

Focus on anisotropies

Anisotropy of primordial tensor power spectrum

$$\langle h_{ij}(\boldsymbol{k})h^{ij}(\boldsymbol{k}')\rangle := (2\pi)^3 P_h(\boldsymbol{k})\delta^{(3)}(\boldsymbol{k}-\boldsymbol{k}')$$

$$P_{h}(\boldsymbol{k}) = P_{h}(k) \sum_{LM} \boldsymbol{q}_{LM} \left(\frac{k}{k_{0}}\right)^{\gamma} Y_{LM}(\hat{k})$$
$$= P_{h}(k) \sum_{n} \boldsymbol{g}_{n} \left(\frac{k}{k_{0}}\right)^{\gamma} \cos^{n} \theta_{\hat{k}}$$

Some models predict such an anisotropy,

U(1) gauge field :
$$(g_0, g_2, g_4, g_6) = (1, -1, 1, -1)$$

Fujita, Obata, Tanaka, S. Yokoyama, JCAP 1807 (2018) 023
2-form field : $(g_0, g_2, g_4, g_6) = (1, 1, -2, 1)$
Massive spin-s : $(g_0, g_2, g_4, g_6) = (1, -sC_1, sC_2, -sC_3)$
(curvature perturbation)
 $(g_0, g_2, g_4, g_6) = (1, -sC_1, sC_2, -sC_3)$
Kehagias, Riotto, JCAP 1707 (2017) 046

As a result, B-mode fluctuations with different ℓ 's are correlated with each other,

$$C^{BB}_{\ell_1 m_1;\ell_2 m_2}(\gamma) = \frac{2}{\pi} i^{\ell_2 - \ell_1} (-1)^{m_1} \sum_{LM} \delta^{\text{even}}_{\ell_1 + \ell_2 + L} \mathcal{G}^{-m_1 m_2 M; -220}_{\ell_1 \ell_2 L} q_{LM} C^{BB}_{\ell_1 \ell_2}(\gamma)$$
Shiraishi, Mota, Ricciardone, Arroja, JCAP 1407 (2014) 047

with

$$C_{\ell_1\ell_2}^{BB}(\gamma) = \frac{2}{\pi} \int dk \, k^2 P_h(k) T_{\ell_1}^{(B)}(k) T_{\ell_2}^{(B)}(k) \left(\frac{k}{k_0}\right)^{\gamma}$$

If no anisotropies $(q_{LM} = \delta_{L0}\delta_{M0})$,

$$C^{BB}_{\ell_1 m_1; \ell_2 m_2} = \delta_{\ell_1 \ell_2} \delta_{m_1 m_2} C^{BB}_{\ell_1}$$

CMB2nd ver. 1.101

- * Angular power spectra, $C_{\ell}^{\Theta\Theta}$, $C_{\ell}^{\Theta E}$, C_{ℓ}^{EE} , C_{ℓ}^{BB} , from Scalar/Vector/Tensor Perturbations, which are consistent to CAMB results with O(0.1)% error.
- * TT/TE/EE/BB power with primordial anisotropies
- * Lensed bispectra $\widehat{B}_{L_1L_2L_3}^{XYZ,s_1s_2s_3}$ as well as the lensed power spectra $\widehat{C}_L^{XY,s}$ including curl-mode can be computed.
- * Signal-to-noise ratio, $\frac{S}{N} = \frac{1}{\sqrt{(F_{ii})^{-1}}}$, where F_{ij} is the Fisher matrix, $F_{ij} = \sum_{L_1 L_2 L_3} \frac{\hat{B}_{L_1 L_2 L_3}^i \hat{B}_{L_1 L_2 L_3}^j}{\Delta_{L_1 L_2 L_3} C_{L_1}^{XX} C_{L_2}^{YY} C_{L_3}^{ZZ}}$ (i, j = XYZ)
- * Compute $f_{\rm NL}$ parameters for local/equilateral/orthogonal/folded templates
- * EFT of Type-I DHOST is ready for implementation.
- * Would be open in near future ?

Setup

Fiducial power spectrum + anisotropic component

$$\begin{cases} \gamma = 0 \quad g_0, q_{0M} = 1 \\ P_h(\mathbf{k}) = P_h(k) + P_h(k) \sum_{n \ge 2} g_n \cos^n \theta_{\hat{k}} \\ \gamma \neq 0 \quad g_0, q_{0M} = \text{arbitrary} \\ P_h(\mathbf{k}) = P_h(k) + P_h(k) \sum_{n \ge 0} g_n \left(\frac{k}{k_0}\right)^{\gamma} \cos^n \theta_{\hat{k}} \end{cases}$$

$$C^{BB(\text{obs})}_{\ell_1 m_1; \ell_2 m_2}(\gamma) = C^{BB}_{\ell_1} \delta_{\ell_1 \ell_2} \delta_{m_1 m_2} + C^{BB}_{\ell_1 m_1; \ell_2 m_2}(\gamma)$$

observed

fiducial (flat, vacuum fluc.) anisotropic

Power spectra depend on anisotropy parameters :

$$C^{BB}_{\ell_1 m_1; \ell_2 m_2}(q_{0M}, q_{2M}, q_{4M}, q_{6M})$$

How precisely can we determine these parameters ? \rightarrow Fisher information matrix For isotropic case,

$$F_{ij} = \sum_{\ell} \left[\tilde{C}_{\ell} \right]^{-1} \left(\frac{\partial C_{\ell}}{\partial \theta_i} \right) \left[\tilde{C}_{\ell} \right]^{-1} \left(\frac{\partial C_{\ell}}{\partial \theta_j} \right)$$
$$\tilde{C}_{\ell} := C_{\ell} (\theta_i = \theta_i^{\text{fid}}) + N_{\ell}$$
$$C_{\ell} := \begin{pmatrix} C_{\ell}^{\Theta\Theta} & C_{\ell}^{\Theta E} & 0\\ C_{\ell}^{\Theta E} & C_{\ell}^{EE} & 0\\ 0 & 0 & C_{\ell}^{BB} \end{pmatrix} \quad N_{\ell} := \begin{pmatrix} \mathcal{N}_{\ell}^{\Theta\Theta} & 0 & 0\\ 0 & \mathcal{N}_{\ell}^{EE} & 0\\ 0 & 0 & \mathcal{N}_{\ell}^{BB} \end{pmatrix}$$

Covariance matrix

Detector noise

Observational uncertainty

For B-mode,

$$F_{ij} = \frac{1}{2} \sum_{\ell} \frac{2\ell + 1}{C_{\ell}^{BB(\text{fid})} + \mathcal{N}_{\ell}^{BB}} \left(\frac{\partial C_{\ell}^{BB}}{\partial \theta_{i}}\right) \left(\frac{\partial C_{\ell}^{BB}}{\partial \theta_{j}}\right)$$

The uncertainty in measuring θ_i is given by the inverse of Fisher matrix,

For anisotropic B-mode,

$$\{\theta_i\} = \{q_{LM}\} : F_{LM;L'M'} = \delta_{LL'}\delta_{MM'}F_L^{BB}$$
$$\{\theta_i\} = \{g_n\} : F_{pq} = \sum_{LM} \frac{\partial q_{LM}}{\partial g_p} \frac{\partial q_{LM}}{\partial g_q}F_L^{BB}$$

with

$$F_{L}^{BB} = \frac{1}{4\pi} \sum_{\ell_{1}\ell_{2}} (2\ell_{1}+1)(2\ell_{2}+1) \begin{pmatrix} \ell_{1} & \ell_{2} & L \\ -2 & 2 & 0 \end{pmatrix}^{2} \frac{(C_{\ell_{1}\ell_{2}}^{BB})^{2}}{\tilde{C}_{\ell_{1}}^{BB}\tilde{C}_{\ell_{2}}^{BB}}$$
$$\tilde{C}_{\ell}^{BB} = C_{\ell}^{BB}(\{\theta_{i}\} = 0) + \mathcal{N}_{\ell}^{BB}$$
fiducial spectrum : $q_{LM} = 0$ or $g_{n} = 0$

Noise model

Detector noise is represented by a white noise,

$$\mathcal{N}_{\ell}^{BB} = N_{\ell}^{BB} e^{\ell^2 \sigma_b^2}$$
Noise spectrum : $N_{\ell}^{BB} = \left(\frac{\pi}{10800} \frac{w_{BB}^{-1/2}}{\mu \text{K arcmin}}\right)^2 \mu \text{K}^2 \text{ str}$
Beam width : $\sigma_b = \frac{\pi}{10800} \frac{\theta_{\text{FWHM}}}{\text{arcmin}} \frac{1}{\sqrt{8 \ln 2}}$

We choose

$$w_{BB}^{-1/2} = 63.1 \ \mu \text{K} \text{ arcmin}$$
 Planck
5.0 $\mu \text{K} \text{ arcmin}$ LiteBIRD
1.0 $\mu \text{K} \text{ arcmin}$ CMB-S4

$$\theta_{\rm FWHM} = 30 \ {\rm arcmin}$$
 LiteBIRD

Results

$$\sigma_{g_n}=\sqrt{(F^{-1})_{nn}}$$
 and $\sigma_{q_{LM}}=\sqrt{(F^{-1})_{LM;LM}}$ with $\gamma=0\;,r=0.01$

CMB-S4 LiteBIRD

	CVL	1.0	5.0	63.1
g_2	1.93×10^{-3}	5.98×10^{-2}	$2.03 imes 10^{-1}$	3.25
g_2	8.23×10^{-3}	$2.66 imes 10^{-1}$	$9.25 imes 10^{-1}$	$1.89 imes 10^1$
g_4	1.24×10^{-2}	$3.90 imes10^{-1}$	1.35	$2.94 imes 10^1$
g_2	2.33×10^{-2}	$6.29 imes10^{-1}$	1.47	$1.92 imes 10^1$
g_4	8.27×10^{-2}	2.25	4.67	$3.23 imes 10^1$
g_6	6.46×10^{-2}	1.80	3.67	1.11×10^1
q_{2M}	4.98×10^{-3}	$1.26 imes 10^{-1}$	4.10×10^{-1}	9.52
q_{4M}	4.28×10^{-3}	$1.53 imes 10^{-1}$	$5.59 imes 10^{-1}$	$1.27 imes 10^1$
q_{6M}	5.71×10^{-3}	$1.50 imes 10^{-1}$	$2.66 imes 10^{-1}$	$7.55 imes10^{-1}$

Note : As for the anisotropy of curvature perturbations,

$$|g_2^{(S)}| \le 2.56 \times 10^{-2}$$

Planck Collaboration, A&A 594 (2016) A20

Planck

Results

$$\sigma_{g_n}=\sqrt{(F^{-1})_{nn}}$$
 and $\sigma_{q_{LM}}=\sqrt{(F^{-1})_{LM;LM}}$ with $\gamma=0\;,r=0.001$

		CMB-S4	LiteBIRD	Planck
	CVL	1.0	5.0	63.1
g_2	1.93×10^{-3}	1.25×10^{-1}	$7.37 imes 10^{-1}$	$2.37 imes 10^1$
g_2	8.23×10^{-3}	$5.61 imes 10^{-1}$	3.96	$1.39 imes 10^2$
g_4	1.24×10^{-2}	$8.13 imes 10^{-1}$	6.08	$2.15 imes 10^2$
g_2	2.33×10^{-2}	1.10	4.20	1.41×10^2
g_4	8.27×10^{-2}	3.78	8.23	$2.33 imes10^2$
g_6	6.46×10^{-2}	3.03	4.58	$7.31 imes 10^1$
q_{20}	4.98×10^{-3}	$2.49 imes 10^{-1}$	1.95	$6.68 imes 10^1$
q_{40}	4.28×10^{-3}	$3.34 imes 10^{-1}$	2.60	$9.98 imes 10^1$
q_{60}	5.71×10^{-3}	$2.33 imes 10^{-1}$	$3.13 imes 10^{-1}$	4.98

Note : As for the anisotropy of curvature perturbations,

$$|g_2^{(S)}| \le 2.56 \times 10^{-2}$$

Planck Collaboration, A&A 594 (2016) A20

Results

$$P_h(\mathbf{k}) = P_h(k) \sum_n g_n \left(\frac{k}{k_0}\right)^{\gamma} \cos^n \theta_{\hat{k}}$$
$$= -\frac{1}{2}, r = 0.01 \qquad \gamma = -1, r = 0.01$$

CMB-S4 LiteBIRD Planck

	CVL	1.0	5.0	63.1
g_0	1.23×10^{-2}	8.26×10^{-2}	$1.96 imes 10^{-1}$	1.42
g_2	3.36×10^{-2}	$2.18 imes 10^{-1}$	$5.26 imes 10^{-1}$	3.96
g_0	1.59×10^{-2}	$1.22 imes 10^{-1}$	$3.23 imes 10^{-1}$	2.38
g_2	1.06×10^{-1}	$9.23 imes10^{-1}$	2.62	$1.94 imes 10^1$
g_4	1.17×10^{-1}	1.05	2.99	$2.22 imes 10^1$
g_0	2.02×10^{-2}	$1.27 imes 10^{-1}$	$3.25 imes 10^{-1}$	2.38
g_2	2.82×10^{-1}	1.19	2.74	$1.95 imes 10^1$
g_4	7.93×10^{-1}	2.49	3.84	$2.31 imes 10^1$
g_6	5.75×10^{-1}	1.66	1.77	4.66
q_{0M}	1.82×10^{-2}	$1.39 imes 10^{-1}$	$3.07 imes 10^{-1}$	1.90
q_{2M}	3.55×10^{-2}	$2.30 imes 10^{-1}$	$5.56 imes10^{-1}$	4.18
q_{4M}	3.17×10^{-2}	$2.83 imes 10^{-1}$	$8.09 imes10^{-1}$	5.99
q_{6M}	3.92×10^{-2}	$1.13 imes 10^{-1}$	$1.20 imes 10^{-1}$	$3.18 imes 10^{-1}$

CMB-S4 LiteBIRD Planck

	CVL	1.0	5.0	63.1
g_0	5.28×10^{-2}	$9.67 imes 10^{-2}$	1.31×10^{-1}	$5.93 imes 10^{-1}$
g_2	1.43×10^{-1}	$2.61 imes 10^{-1}$	$3.58 imes 10^{-1}$	1.64
g_0	7.23×10^{-2}	$1.56 imes 10^{-1}$	$2.23 imes 10^{-1}$	1.04
g_2	5.14×10^{-1}	1.25	1.85	8.65
g_4	5.76×10^{-1}	1.42	2.11	9.91
g_0	7.38×10^{-2}	$1.56 imes 10^{-1}$	$2.24 imes 10^{-1}$	1.04
g_2	6.02×10^{-1}	1.29	1.88	8.69
g_4	1.10	1.72	2.33	$1.02 imes 10^1$
g_6	6.91×10^{-1}	$7.08 imes 10^{-1}$	$7.17 imes 10^{-1}$	1.88
q_{0M}	8.08×10^{-2}	$1.49 imes 10^{-1}$	$1.88 imes 10^{-1}$	$8.21 imes 10^{-1}$
q_{2M}	1.51×10^{-1}	$2.76 imes10^{-1}$	$3.79 imes10^{-1}$	1.73
q_{4M}	1.56×10^{-1}	$3.84 imes 10^{-1}$	$5.71 imes 10^{-1}$	2.68
q_{6M}	4.70×10^{-2}	4.82×10^{-2}	4.89×10^{-2}	$1.28 imes 10^{-1}$

Note : As for the aniositropy of curvature perturbations, $|g_2^{(S)}(\gamma = -1)| \leq 1.56 \times 10^{-1} \text{Planck Collaboration, A&A 594 (2016) A20}$ Note : With $\gamma = -2$, $(\sigma_{q_{0M}}, \sigma_{q_{2M}}) = (30, 58)$ has been reported whereas we obtained $(\sigma_{q_{0M}}, \sigma_{q_{2M}}) = (30.1, 59.6)$ Shiraishi, Mota, Ricciardone, Arroja, JCAP 1407 (2014) 047

- There are several generation mechanisms of GWs at the early Universe.

- Some mechanisms generate anisotropic GWs, so is it possible to get such anisotropic signals with future missions of B-mode observations ?

- To constrain the anisotropy parameter up to *g*⁴, we need CMB-S4.