GAUGE/GRAVITY DUALITY

Veronika Hubeny

Physics Department & center for Quantum Mathematics and Physics

References:

Original work:

- * Maldacena: hep-th/9711200
- * Gubser, Klebanov, Polyakov: hep-th/9802109
- * Witten: hep-th/9802150, hep-th/9803131

Early reviews:

- * MAGOO: hep-th/9905111
- * D'Hoker & Freedman: hep-th/0201253
- * Horowitz & Polchinski: gr-qc/0602037

More recent reviews:

- * McGreevy: 0909.0518
- * VH & Rangamani: 1006.3675
- * Polchinski: 1010.6134
- * Maldacena: 1106.6073
- * Hubeny: 1501.00007
- * Harlow: 1802.01040

(Early part of the lectures was based on this review, written for GR audience.)

and many many more....

OUTLINE

- Motivation: path to QG
- Black holes & holographic principle
- Preview of gauge/gravity correspondence
- Historical detour: string theory
- Anti de Sitter geometry
- Elements of gauge/gravity dictionary

OUTLINE

- Motivation: path to QG
- Black holes & holographic principle
- Preview of gauge/gravity correspondence
- Historical detour: string theory
- Anti de Sitter geometry
- Elements of gauge/gravity dictionary

Prologue

Unification in physics: consider extreme regimes...

Towards QG...

Gauge/gravity duality substantiates this expectation Black holes are playing a key role in this quest...

OUTLINE

- Motivation: path to QG
- Black holes & holographic principle
- Preview of gauge/gravity correspondence
- Historical detour: string theory
- Anti de Sitter geometry
- Elements of gauge/gravity dictionary

Black holes

- Black hole = region of spacetime which cannot communicate with the external universe
- In nature, typically occurs as endpoint of gravitational collapse

Light bending

Background: ordinary starry sky; Foreground: merging black holes

LIGO (SXS) simulation of the event 1.3 billion years ago (two black holes merged into a single one) which led to the first direct detection of gravitational waves in 2015

Observing black holes

- No light escapes from black hole, so we cannot see it directly
- But we see the effects of the spacetime on surrounding matter:

stellar orbits

stars get ripped apart

accreting matter gets heated & radiates

- And now we have entered the exciting era of gravitational wave detection
 - ⇒ We can learn a lot from far away...

Many guises of black holes

Astronomical objects
 powering the most energetic processes in the universe

Mathematically elegant

Lie at heart of profound dualities

Remarkably related to 'ordinary' systems

May hold a key to quantum gravity

Black hole characteristics

- Important characteristics of a black hole:
 - ullet mass M
 - \bullet horizon area A
 - surface gravity κ (= force exerted at infinity to keep a unit mass suspended at horizon)

- Cf. essential characteristics of ordinary matter (e.g. fluid)
 - ullet temperature T
 - ullet energy E
 - ullet entropy S

Black hole thermodynamics

- Important characteristics of a black hole:
 - ullet mass M
 - \bullet horizon area A
 - surface gravity κ (= force exerted at infinity to keep a unit mass suspended at horizon)

Laws of BH mechanics mimic laws of thermodynamics:

- 0. κ is constant over horizon for stationary BH
- 1. $dM = (1/8\pi) \kappa dA + \Omega_H dJ$
- 2. $\delta A \ge 0$ in any process
- 3. Impossible to achieve $\kappa = 0$ by a physical process

- 0. T is constant over system in thermal equilibrium
- 1. dE = T dS + work terms
- 2. $\delta S \ge 0$ in any process
- 3. Impossible to achieve T = 0 by a physical process

Black holes as thermodynamic objects

- $S \sim A$ motivated by gedanken-experiments of matter falling into BH [Bekenstein]
- $T \sim \kappa$ substantiated by semi-classical calculations [Hawking]:

black holes radiate at temperature
$$T_{BH} = \frac{\hbar c}{k_B} \frac{\kappa}{2\pi}$$

Natural question: statistical mechanics origin of BH entropy?

Black hole Information Paradox

 According to general relativity, information which falls into a black hole is lost forever.

 According to quantum mechanics, information can never be lost.

• This clash provides an important clue toward formulating a unified theory.

Entropy bound

- Generalized Second Law: combined matter + BH entropy increases
 - → Spherical entropy bound (slowly evolving systems): ['t Hooft, Susskind]

$$S_{\mathrm{matter}} \leq \frac{A}{4} \implies \mathrm{entropy} \ S \ \mathrm{is \ not \ extensive:} \ S \not\sim V$$

Intuitive expectation:

- Amount of information we can store in a region should scale with the volume...
- … in absence of gravity.
 With gravity, sufficiently large info storage will collapse to a black hole
 ⇒ can't exceed S = A/4

Holographic Principle

Covariant entropy bound: full spacetime construct [Bousso]

Entropy on any lightsheet L of a surface σ cannot exceed the area of σ :

$$S(L) \le \frac{A(\sigma)}{4}$$

- Holographic Principle: in a theory of gravity, the number of degrees of freedom describing the physics on lightsheet $L(\sigma)$ cannot exceed $A(\sigma)/4$
 - → physical equivalence between 2 theories living in different # of dimensions!
- Concrete realization: gauge/gravity duality

OUTLINE

- Motivation: path to QG
- Black holes & holographic principle
- Preview of gauge/gravity correspondence
- Historical detour: string theory
- Anti de Sitter geometry
- Elements of gauge/gravity dictionary

Gauge/gravity duality

also known as the AdS/CFT correspondence

first derived within string theory [Maldacena '97] (but applies more generally)

Gauge/gravity duality

also known as the AdS/CFT correspondence

• Since the two descriptions live in different number of dimensions, we call such a correspondence holographic.

Gauge/gravity duality

* better analogy: stereogram...

...but infinitely more complicated

Applications of gauge/gravity duality

String theory (gravity) ⇔

"in bulk" = higher dimensions

describes gravitating systems, e.g. black holes

field theory (no gravity)
"on boundary" = lower dimensions

describes experimentally accessible systems

Invaluable tool to:

- Study strongly interacting field theory (hard, but describes many systems)
 by working with higher-dimensional gravity on AdS (easy).
- Study quantum gravity in AdS (hard, but needed to understand spacetime)
 by using the field theory (easy for certain things)

Pre-requisite:

We need to understand the AdS/CFT dictionary...

- How does bulk spacetime emerge from the CFT?
 - Which CFT quantities give the bulk metric?
 - What determines bulk dynamics (Einstein's eq.)?
 - How does one recover a local bulk operator from CFT quantities?
- What part of bulk can we recover from a restricted CFT info?
 - What bulk region does a CFT state (at a given instant in time) encode?
 - What bulk region does a spatial subregion of CFT state encode?
- (How) does the CFT "see" inside a black hole?
 - Does it unitarily describe black hole formation & evaporation process?
 - How does it resolve curvature singularities?

Fortuitously, using GR technology goes a long way...

OUTLINE

- Motivation: path to QG
- Black holes & holographic principle
- Preview of gauge/gravity correspondence
- Historical detour: string theory
- Anti de Sitter geometry
- Elements of gauge/gravity dictionary

String Theory

- Compelling candidate for QG
 - it is a self-consistent quantum theory which contains gravity (GR)
- Unifies all fundamental forces and particles
 - these are manifested as excitations of a fundamental string (cf. different notes produced by a violin string...)

This "tames" the infinities in computations, simplifies interactions:

Spacetime in string theory

- string quantization → graviton (as one of the modes of the string)
 - = quantum of gravity (~ ripple in spacetime)
 - hence unlike ordinary QFT where gravitons are impossible, string theory actually requires gravity
- new type of fuzziness of spacetime
 - in addition to QM uncertainty principle, blurriness on string scale
 - this bounds how precisely we can describe spacetime
- 2-dimensional worldsheet description:
 - string position described by fields on the string
 - spacetime geometry described by interaction strength
 - Einstein's equation for gravity comes out naturally

Spacetime in string theory

- Consistency requires extra dimensions (9 space + 1 time)
 - these can however be small ("compactified")

• in fact the internal space gives rise to matter we see.

- Supersymmetry
 - extends spacetime: new "fermionic" dimensions
- T-duality
 - equivalence between compact dimension of size R & one of size I/R
 - Lesson: distances are not absolute

Dualities in string theory

- Strong coupling: expect uncontrollably large fluctuations...
- But in fact equivalent to a distinct weakly-coupled description!

- Often the variables used cease to be descriptive as we change a parameter (e.g. coupling)
- Most "properties" look different on the two sides

Dualities in string theory

- Strong coupling: expect uncontrollably large fluctuations...
- But in fact equivalent to a distinct weakly-coupled description!
- D(irichlet)-branes carry the (RR) charges required by duality [Polchinski]
 - Weak coupling: topological defects on which open strings can end
 - Strong coupling: natural 'fundamental' constituents of the theory
- Dp-branes extended in p+1 dimensions
- Sufficiently many D-branes backreact on spacetime
 - extremal black p-brane (higher-dimensional generalization of extremal Reissner-Nordstrom BH)

eg. for p=3:
$$ds^2=f(r)^{-1/2}\,\eta_{\mu\nu}\,dx^\mu\,dx^\nu+f(r)^{1/2}\left(dr^2+r^2\,d\Omega_5^2\right)$$
 where
$$f(r)=1+\frac{4\pi\,g_s\,N\,\ell_s^4}{r^4}$$

Maldacena's construction

(in IIB string theory)

* Consider a stack of N coincident D3-branes in 2 regimes:

$$g_s N \gg 1$$

closed + open string excitations in R¹⁰

curved geometry: extremal black 3-brane

Maldacena's construction

take "decoupling" (low-energy) limit:

$$g_s N \ll 1$$

closed strings decouple; we're left with low-energy open string modes:

SU(N) gauge theory

Asymptotic modes decouple; we're left with:

> closed string theory on near-horizon geometry: $AdS_5 \times S^5$

Maldacena's conjecture

 $g_s N \ll 1$

SU(N) gauge theory

 $g_s N \gg 1$

closed string theory on $AdS_5 \times S^5$

* but gauge theory is defined for all coupling, so identify the two descriptions:

→ AdS/CFT correspondence:

Four-dimensional $\mathcal{N}=4$ SU(N) SYM gauge theory is fully equivalent to IIB string theory with AdS₅ × S⁵ boundary conditions.

AdS/CFT correspondence

String theory (∋ gravity) ⇔ gauge theory (CFT)

"in bulk" asymp. AdS × K

"on boundary"

Specific example (previous case):

IIB string theory on AdS₅ \times S⁵:

$$\mathcal{N}=4$$
 SU(N) SYM:

$$N$$
 , $\lambda \equiv g_{
m YM}^2 \, N$, thooft coupling rank of gauge group ℓ

- large $\lambda \Rightarrow$ small stringy corrections
- large $N \Rightarrow \text{small quantum corrections}$
- Hence $N \gg \lambda \gg 1 \implies$ classical gravity on AdS₅ × S⁵

$AdS_5 \times S^5$ geometry

can obtain via embedding into I-higher dimensional space(time)s

5D surface 5D surface
$$-X_{-1}^2 - X_0^2 + X_1^2 + \dots + X_4^2 = -\ell^2 \qquad \qquad X_1^2 + \dots + X_6^2 = \ell^2$$
 on $\mathbb{R}^{4,2}$: on \mathbb{R}^6 :
$$ds^2 = -dX_{-1}^2 - dX_0^2 + dX_1^2 + \dots + dX_4^2 \qquad \qquad ds^2 = dX_1^2 + \dots + dX_6^2$$

$$\rightsquigarrow SO(4,2) \times SO(6)$$
 symmetry

• full solution ($\Lambda=0$) supported by 5-form field strength

OUTLINE

- Motivation: path to QG
- Black holes & holographic principle
- Preview of gauge/gravity correspondence
- Historical detour: string theory
- Anti de Sitter geometry
- Elements of gauge/gravity dictionary

Lecture 2

AdS/CFT correspondence

String theory (∋ gravity) ⇔ gauge theory (CFT)

"in bulk" asymp. AdS

"on boundary"

Key aspects:

- * Holographic: gauge theory lives in fewer dimensions.
- * Strong/weak coupling duality.
- * Gravitational theory maps to non-gravitational one!

Invaluable tool to:

- Study strongly coupled field theory (hard, but describes many systems)
 by working with higher-dimensional gravity on AdS (easy).
- Study quantum gravity in AdS (hard, but needed to understand spacetime)
 by using the field theory (easy for certain things)

Pre-requisite: Understand the AdS/CFT 'dictionary'...

Recall: $AdS_5 \times S^5$ geometry

• In Maldacena's construction, arose as near-horizon geometry of extremal black 3-brane (= backreaction of stack of coincident D3-branes)

$$ds^{2} = f(r)^{-1/2} \eta_{\mu\nu} dx^{\mu} dx^{\nu} + f(r)^{1/2} \left(dr^{2} + r^{2} d\Omega_{5}^{2} \right)$$

where
$$f(r) = 1 + \frac{4\pi \, g_s \, N \, \ell_s^4}{r^4} \equiv 1 + \frac{\ell^4}{r^4}$$

- Event horizon is at r=0
- Near horizon geometry:

$$ds^{2} = \frac{r^{2}}{\ell^{2}} \eta_{\mu\nu} dx^{\mu} dx^{\nu} + \frac{\ell^{2}}{r^{2}} dr^{2} + \ell^{2} d\Omega_{5}^{2}$$

Geometry of AdS₅

Poincare AdS

$$ds^2 = \frac{\ell^2}{z^2} \left(-dt^2 + dx_i dx^i + dz^2 \right)$$

4-d Poincare symmetry scaling symmetry

Global AdS

$$ds^{2} = -\left(\frac{\rho^{2}}{\ell^{2}} + 1\right) d\tau^{2} + \frac{d\rho^{2}}{\left(\frac{\rho^{2}}{\ell^{2}} + 1\right)} + \rho^{2} d\Omega_{3}^{2}$$

static spherically symmetric

Geometry of AdS₃

Poincare AdS3

Global AdS₃

$$ds^{2} = \frac{\ell^{2}}{z^{2}} \left(-dt^{2} + dx^{2} + dz^{2} \right)$$

$$ds^{2} = \frac{\ell^{2}}{z^{2}} \left(-dt^{2} + dx^{2} + dz^{2} \right) \qquad ds^{2} = -\left(\frac{\rho^{2}}{\ell^{2}} + 1 \right) d\tau^{2} + \frac{d\rho^{2}}{\left(\frac{\rho^{2}}{\ell^{2}} + 1 \right)} + \rho^{2} d\varphi^{2}$$

view as embedded in R⁴
$$-X_{-1}^2 - X_0^2 + X_1^2 + X_2^2 = -\ell^2$$

Geometry of AdS₃

Poincare AdS₃

$$ds^{2} = \frac{\ell^{2}}{z^{2}} \left(-dt^{2} + dx^{2} + dz^{2} \right)$$

Global AdS3

$$ds^{2} = \frac{\ell^{2}}{z^{2}} \left(-dt^{2} + dx^{2} + dz^{2} \right) \qquad ds^{2} = -\left(\frac{\rho^{2}}{\ell^{2}} + 1 \right) d\tau^{2} + \frac{d\rho^{2}}{\left(\frac{\rho^{2}}{\ell^{2}} + 1 \right)} + \rho^{2} d\varphi^{2}$$

view as embedded in R⁶

$$-X_{-1}^2 - X_0^2 + X_1^2 + X_2^2 = -\ell^2$$

$$X_{-1} = \ell t/z$$

$$X_{0} = \frac{\ell^{2} - t^{2} + x^{2} + z^{2}}{2z}$$

$$X_{1} = \frac{-\ell^{2} - t^{2} + x^{2} + z^{2}}{2z}$$

$$X_{2} = \ell x/z$$

$$X_{-1} = \sqrt{\rho^2 + \ell^2} \sin\left(\frac{\tau}{\ell}\right)$$

$$X_0 = \sqrt{\rho^2 + \ell^2} \cos\left(\frac{\tau}{\ell}\right)$$

$$X_1 = \rho \sin\varphi$$

$$X_2 = \rho \cos\varphi$$

$$t, x \in (-\infty, \infty)$$
, $z \in (0, \infty)$

$$\tau \in (-\infty, \infty) , \quad \rho \in [0, \infty) , \quad \varphi \in [0, 2\pi)$$

Geometry of AdS

Poincare AdS:

$$ds^{2} = \frac{\ell^{2}}{z^{2}} \left(-dt^{2} + dx_{i} dx^{i} + dz^{2} \right)$$

Geometry of AdS

Poincare AdS:

$$ds^{2} = \frac{\ell^{2}}{z^{2}} \left(-dt^{2} + dx_{i} dx^{i} + dz^{2} \right)$$

Global AdS:

$$ds^{2} = -\left(\frac{\rho^{2}}{\ell^{2}} + 1\right) d\tau^{2} + \frac{d\rho^{2}}{\left(\frac{\rho^{2}}{\ell^{2}} + 1\right)} + \rho^{2} d\Omega_{3}^{2}$$

OUTLINE

- Motivation: path to QG
- Black holes & holographic principle
- Preview of gauge/gravity correspondence
- Historical detour: string theory
- Anti de Sitter geometry
- Elements of gauge/gravity dictionary
 - Scale/radius duality ("UV/IR correspondence")
 - States / geometries
 - Fluid/gravity correspondence
 - CFT probes of bulk geometry...

Radial direction

What boundary quantity encodes the extra bulk direction?

hints from spatial geometry of AdS:

Radial direction

What boundary quantity encodes the extra bulk direction?

hints from spatial geometry of AdS:

The radial bulk direction comes from a scale size on boundary:

- points near the boundary → small arcs
- points further in the bulk → larger arcs
- same point represented by multiple arcs

Provides useful intuition:
 e.g. bulk particle falling due to gravity
 falling into black hole

e.g. bulk particle falling due to gravity boundary excitation spreading outward

← … thermalizing

Bulk geometries and CFT states

different bulk geometries ~ different states in CFT (asymptotically AdS)

Pure AdS
 wacuum state in CFT

Finite-mass deformations of the bulk geometry result in non-zero boundary stress tensor

Bulk geometries and CFT states

different bulk geometries ~ different states in CFT (asymptotically AdS)

- Pure AdS wacuum state in CFT
- Black hole
 w thermal state in CFT
 (large BH
 w high temperature)

Bulk geometries and CFT states

evolving bulk geometries \leftrightarrow corresponding dynamics

- Pure AdS wacuum state in CFT
- Black hole

 w thermal state in CFT
 - quasinormal modes of approach to perturbed black hole thermal equilibrium

 [Horowitz & VH]
- horizon response properties

- CFT transport
 coefficients
 [Kovtun, Son, Starinets]
- at non-linear level, in hydro regime (large BHs) → fluid/gravity correspondence
 [Bhattacharyya,VH, Minwalla, Rangamani]

Description of dynamics

* Bulk dynamics is specified by Einstein's equations.

$$E_{ab} \equiv R_{ab} - \frac{1}{2}R g_{ab} + \Lambda g_{ab} = 0$$

* Boundary dynamics satisfies stress tensor conservation.

$$\nabla_{\mu}T^{\mu\nu} = 0$$

(Relativistic) fluid dynamics

- = effective description of interacting systems which have achieved local equilibrium
 - valid on length scales

$$L \gg \ell_{\rm mfp} \sim \frac{1}{T}$$

- Variables describing the system:
 - local temperature $T(x^{\mu})$ and local velocity $u^i(x^{\mu})$
- ullet Key dynamical equation: conservation of the stress tensor $T^{\mu
 u}$

$$\nabla_{\mu} T^{\mu\nu} = 0$$

• supplemented by constitutive relations, which express $T^{\mu\nu}$ in terms of T and u^{μ} .

Eg. for ideal fluid,
$$T^{\mu\nu} = (\rho + P) \, u^\mu \, u^\nu + P \, \eta^{\mu\nu}$$

(Relativistic) fluid dynamics

- = effective description of interacting systems which have achieved local equilibrium
 - valid on length scales

$$L \gg \ell_{\rm mfp} \sim \frac{1}{T}$$

- Variables describing the system:
 - local temperature $T(x^{\mu})$ and local velocity $u^i(x^{\mu})$
- ullet Key dynamical equation: conservation of the stress tensor $T^{\mu
 u}$

$$\nabla_{\mu} T^{\mu\nu} = 0$$

• supplemented by constitutive relations, which express $T^{\mu\nu}$ in terms of T and u^{μ} .

Eg. for dissipative fluid, $T^{\mu\nu}=(\rho+P)\,u^\mu\,u^\nu+P\,\eta^{\mu\nu}-2\,\eta\,\sigma^{\mu\nu}+\dots$

Fluid regime for AdS black hole?

When does the boundary stress tensor describe a fluid? need scale of variation \gg thermal scale =1/T

(for 5-dimensional bulk \Rightarrow 4-dimensional boundary)

Fluid regime for AdS black hole?

When does the boundary stress tensor describe a fluid? need scale of variation » thermal scale

Thermal equilibrium

Planar black hole geometry given by metric:

$$ds^{2} = -2 u_{\mu} dx^{\mu} dr + r^{2} \left(\eta_{\mu\nu} + \frac{\pi^{4} T^{4}}{r^{4}} u_{\mu} u_{\nu} \right) dx^{\mu} dx^{\nu}$$

= 4-parameter family of solutions parametrized by BH temperature T and horizon velocity u^{μ}

Induced boundary stress tensor:

$$T^{\mu\nu} = \pi^4 T^4 \left(\eta^{\mu\nu} + 4 u^{\mu} u^{\nu} \right)$$

= Perfect fluid at temperature T moving with velocity u^{μ} (such that $u^{\mu}u_{\mu}=-1$).

Note: this describes a conformal fluid ($T^{\mu}_{\ \mu}=0$) with no dissipation.

Black holes with variation

Mathematically, instead of specifying 4 parameters in

$$ds^{2} = -2 u_{\mu} dx^{\mu} dr + r^{2} \left(\eta_{\mu\nu} + \frac{\pi^{4} T^{4}}{r^{4}} u_{\mu} u_{\nu} \right) dx^{\mu} dx^{\nu}$$

suppose we specified the metric by 4 functions of x^{μ} :

$$ds^{2} = -2 u_{\mu}(\mathbf{x}) dx^{\mu} dr + r^{2} \left(\eta_{\mu\nu} + \frac{\pi^{4} T(\mathbf{x})^{4}}{r^{4}} u_{\mu}(\mathbf{x}) u_{\nu}(\mathbf{x}) \right) dx^{\mu} dx^{\nu}$$

This metric is still regular (for regular $u_{\mu}(x)$ and T(x)), but does not solve Einstein's equations unless $u_{\mu}(x)$ and T(x) are constant.

Iterative construction

However, we can use this as a starting point for an iterative construction:

Assuming slow variations

$$\frac{\partial_{\mu} \log T}{T} \sim \mathcal{O}(\epsilon) , \qquad \frac{\partial_{\mu} u}{T} \sim \mathcal{O}(\epsilon)$$

we can expand

$$g_{ab} = \sum_{k=0}^{\infty} \epsilon^k g_{ab}^{(k)}, \qquad T = \sum_{k=0}^{\infty} \epsilon^k T^{(k)}, \qquad u_{\mu} = \sum_{k=0}^{\infty} \epsilon^k u_{\mu}^{(k)}$$

and solve Einstein's equations order by order in ϵ .

Iterative construction

Einstein's equations

$$E_{ab} \equiv R_{ab} - \frac{1}{2}R g_{ab} + \Lambda g_{ab} = 0$$

separate into two sets:

* Constraint equations: $E_{r\mu} = 0 \iff \nabla_{\mu} T^{\mu\nu} = 0$

these implement stress tensor conservation (at one lower order)

* Dynamical equations: $E_{\mu\nu} = 0$ and $E_{rr} = 0$

these allow us to solve for the metric correction (at the given order)

Fluid/Gravity correspondence

[Bhattacharyya, Hubeny, Minwalla, Rangamani, 2008]

- Dynamics of bulk black hole
 ⇒ fluid dynamics on boundary
 5-d Einstein's equations
 ⇒ 4-d Navier-Stokes equations
 w/ negative cosmological const. (describing relativistic, conformal fluid)
- For any given fluid flow, we iteratively construct a solution of a dynamical black hole in AdS whose horizon mimics the fluid.
- Technically: expand in boundary derivatives and solve order by order
- The radial equation is fully nonlinear, and gives patched 'tubes' of different black holes

- We calculate 2nd order transport coefficients for the conformal fluid.
- The pull-back of the horizon area form gives a natural entropy current on the boundary, with automatically non-negative divergence.

[Bhattacharyya, Hubeny, Loganayagam, Mandal, Minwalla, Morita, Rangamani, Reall]

Key points of the construction

- The iterative construction can in principle be systematically implemented to arbitrary order in ϵ (which obtains correspondingly accurate solution).
- The resulting black hole spacetimes form a continuously-infinite set of (approximate) solutions: instead of specifying 4 parameters, we specify 4 functions of 4 variables.
- However, these solutions are given implicitly in terms of functions $T(x^\mu)$ and $u^\nu(x^\mu)$ which must solve the generalized Navier-Stokes equations.
- Any regular fluid dynamical solution corresponds to a bulk black hole with regular horizon.

Cartoon of the event horizon

- * Initially non-uniform horizon evolves.
- * The horizon area grows.
- * No symmetries; but at late times the configuration equilibrates due to dissipation.
- * The horizon area provides entropy current for the boundary fluid.
- * Such entropy current automatically satisfies the 2nd law of thermodynamics.

[Bhattacharyya,VH, Loganayagam, Mandal, Minwalla, Morita, Rangamani, Reall]

Boundary stress tensor

The 1st order solution induces on the AdS boundary the stress tensor of the expected form:

$$T^{\mu\nu} = \pi^4 T^4 \left(4 u^{\mu} u^{\nu} + \eta^{\mu\nu} \right) - 2 \pi^3 T^3 \sigma^{\mu\nu}$$

From this we can read off the shear viscosity of the fluid; in terms of shear viscosity to entropy density ratio (calculated previously [Policastro, Son, Starinets]),

$$\frac{\eta}{s} = \frac{1}{4\pi}$$

This saturates the famous lower bound conjectured by [Kovtun, Son, Starinets].

At 2nd order we can read off 2nd order transport coefficients.

Fluid/Gravity correspondence

[Bhattacharyya, Hubeny, Minwalla, Rangamani, 2008]

- Dynamics of bulk black hole

 fluid dynamics on boundary
 - w/ negative cosmological const.
 - 5-d Einstein's equations > 4-d Navier-Stokes equations (describing relativistic, conformal fluid)
- For any given fluid flow, we iteratively construct a solution of a dynamical black hole in AdS whose horizon mimics the fluid.
 - Generalizations:
 - charged fluids,
 - superfluids,
 - non-conformal fluids,
 - non-relativistic fluids,
 - fluids with boundary,
 - forced fluids,
 - other dimensions, ...

- Applications:
 - black hole physics,
 - · fluid dynamics,
 - nuclear physics,
 - condensed matter physics,
 - solid state physics, ...
- But not yet everyday liquids, e.g. non-Newtonian fluids.

OUTLINE

- Motivation: path to QG
- Black holes & holographic principle
- Preview of gauge/gravity correspondence
- Historical detour: string theory
- Anti de Sitter geometry
- Elements of gauge/gravity dictionary
 - Scale/radius duality ("UV/IR correspondence")
 - States / geometries
 - Fluid/gravity correspondence
 - CFT probes of bulk geometry... skipped...
 - Entanglement and geometry...

Lecture

Lecture 2

→ Lecture 3

Paths to Holographic EE

String theory (∋ gravity) ⇔ gauge theory (CFT)

"in bulk" asymp. AdS × K

"on boundary"

Applied AdS/CFT:

- study specific system via its dual
- e.g. AdS/QCD, AdS/CMT, ...

Fundamentals of AdS/CFT:

- why/how does the duality work
- map between the 2 sides

Holographic Entanglement Entropy

Quantum Gravity

Entanglement

- Most non-classical manifestation of quantum mechanics
 - "Best possible knowledge of a whole does not include best possible knowledge of its parts — and this is what keeps coming back to haunt us" [Schrodinger '35]
- New quantum resource for tasks which cannot be performed using classical resources [Bennet '98]
- Plays a central role in wide-ranging fields
 - quantum information (e.g. cryptography, teleportation, ...)
 - quantum many body systems
 - quantum field theory
- Hints at profound connections to geometry...

Entanglement Entropy (EE)

Suppose we only have access to a subsystem A of the full system = A + B. The amount of entanglement is characterized by Entanglement Entropy S_A :

- reduced density matrix $ho_A={
 m Tr}_B\ |\psi\rangle\langle\psi|$ (more generally, for a mixed total state, $ho_A={
 m Tr}_B
 ho$)
- EE = von Neumann entropy $S_A = -{
 m Tr}\,
 ho_A\, \log
 ho_A$

Defined if we can divide a quantum system into a subsystem A and its complement B, such that the Hilbert space decomposes:

$$\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B$$

Entanglement Entropy (EE)

Suppose we only have access to a subsystem A of the full system = A + B. The amount of entanglement is characterized by Entanglement Entropy S_A :

- reduced density matrix $ho_A={
 m Tr}_B\ |\psi\rangle\langle\psi|$ (more generally, for a mixed total state, $ho_A={
 m Tr}_B
 ho$)
- EE = von Neumann entropy $S_A = -{
 m Tr}\,
 ho_A\, \log
 ho_A$
- e.g. in local QFT:

A and B can be spatial regions, separated by a smooth entangling surface

The good news & the bad news

- But EE is hard to deal with...
 - non-local quantity, intricate & sensitive to environment
 - difficult to measure
 - difficult to calculate
 - ... especially in strongly-coupled quantum systems
- AdS/CFT to the rescue?
 - Is there a natural bulk dual of EE? (= "Holographic EE")

Yes! - described geometrically...

Holographic EE in static situations

Proposal [RT=Ryu & Takayanagi, '06] for static configurations:

In the bulk, entanglement entropy $S_{\mathcal{A}}$ for a boundary region \mathcal{A} is captured by the area of a minimal co-dimension-2 bulk surface \mathbf{m} at constant t anchored on entangling surface $\partial \mathcal{A}$ & homologous to \mathcal{A}

$$S_{\mathcal{A}} = \min_{\partial \mathfrak{m} = \partial \mathcal{A}} \frac{\operatorname{Area}(\mathfrak{m})}{4 G_N}$$

Remarks:

- Large body of evidence, culminating in [Lewkowycz & Maldacena '13]
- cf. black hole entropy...
- Minimal surface "hangs" into the bulk due to large distances near bdy.
- Note that both LHS and RHS are in fact infinite

Area-law divergence of HEE

Short-distance cutoff δ in the CFT translates to large-radius cutoff R in AdS

with
$$\delta = \frac{\ell^2}{R}$$
 (cf. UV/IR duality)

Bulk area reproduces the correct divergence structure:

$$S_{\mathcal{A}} = c_0 \left(\frac{L}{\delta}\right)^{d-2} + c_1 \left(\frac{L}{\delta}\right)^{d-4} + \cdots \\ + \left\{ \begin{array}{c} c_{d-2} \log\left(\frac{L}{\delta}\right) + \cdots \\ c_{d-2} + \cdots \end{array} \right., \qquad d \quad \text{even} \\ c_{d-2} + \cdots \qquad , \qquad d \quad \text{odd} \end{array}$$

universal coefficients

We can regulate EE by e.g. background subtraction.

Covariant Holographic EE

But the RT prescription is not well-defined outside the context of static configurations:

- In Lorentzian geometry, we can decrease the area arbitrarily by timelike deformations
- In time-dependent context, no natural notion of "const. t" slice...

In time-dependent situations, RT prescription must be covariantized:

Simplest candidate: [HRT = VH, Rangamani, Takayanagi '07]

minimal surface m at constant time

extremal surface **©** in the full bulk

This gives a well-defined quantity in any (arbitrarily time-dependent asymptotically AdS) spacetime

⇒ equally robust as in CFT

Manifest properties of EE

- For pure states $S_{\mathcal{A}} = S_{\mathcal{A}^c}$
- Positivity: $S_A \geq 0$

• Implies positivity of mutual information: $I(A_1, A_2) = S_{A_1} + S_{A_2} - S_{A_1 \cup A_2}$

Proof of Strong Subadditivity

strong subadditivity:

$$S_{\mathcal{A}_1} + S_{\mathcal{A}_2} \ge S_{\mathcal{A}_1 \cup \mathcal{A}_2} + S_{\mathcal{A}_1 \cap \mathcal{A}_2}$$

• proof in static configurations [Headrick & Takayanagi]

$$S_{\mathcal{A}_1} + S_{\mathcal{A}_2} = \alpha + \beta$$

Proof of Strong Subadditivity

strong subadditivity:

$$S_{\mathcal{A}_1} + S_{\mathcal{A}_2} \geq S_{\mathcal{A}_1 \cup \mathcal{A}_2} + S_{\mathcal{A}_1 \cap \mathcal{A}_2}$$

proof in static configurations [Headrick & Takayanagi]

 general proof in time-dependent case uses properties of null geodesics + energy conditions [Wall]

Examples of entanglement relations

Universal:

- Sub-additivity (SA)
- Araki-Lieb (AL)
- Strong sub-additivity (SSA)
- Weak monotonicity (WM)

- $S(A) + S(B) \ge S(AB)$
- $S(A) + S(AB) \ge S(B)$
- $S(AB) + S(BC) \ge S(B) + S(ABC)$
- $S(AB) + S(BC) \ge S(A) + S(C)$

True in holography:

Monogamy of mutual information (MMI)

$$S(AB) + S(BC) + S(CA) \ge S(A) + S(B) + S(C) + S(ABC)$$

• 5-region cyclic inequality (C5)

$$S(ABC) + S(BCD) + S(CDE) + S(DEA) + S(EAB)$$

$$\geq S(AB) + S(BC) + S(CD) + S(DE) + S(EA) + S(ABCDE)$$

k-region cyclic inequality (Ck) for k=odd is obvious...

QI interpretation

Universal:

- Sub-additivity (SA)

$$S(A) + S(B) \ge S(AB)$$

 $I(A:B) \equiv S(A) + S(B) - S(AB) \ge 0$

- Strong sub-additivity (SSA) $S(AB) + S(BC) \ge S(B) + S(ABC)$
 - \Rightarrow Conditional mutual information $I(A:C|B) \equiv I(A:BC) I(A:B) \geq 0$

True in holography:

Monogamy of mutual information (MMI)

$$S(AB) + S(BC) + S(CA) \ge S(A) + S(B) + S(C) + S(ABC)$$

- \Rightarrow Tripartite information $I3(A:B:C) \equiv I(A:B) + I(A:C) I(A:BC) \leq 0$
 - → gives interesting structure information on nature of entanglement in holography cf. [Hayden, Headrick, Maloney]

Covariant Holographic EE

In fact, [Hubeny, Rangamani, Takayanagi '07] identified 4 natural candidates: (all co-dim.2 surfaces ending on ∂A , and coincident for ball regions A in pure AdS)

- \mathfrak{E} = Extremal surface
- \bullet Ψ = Minimal-area surface on maximal-volume slice
- Φ = Surface with zero null expansions
- Ξ = Causal wedge rim

Later known as Causal Information Surface; w/ area = causal holographic information χ [Hubeny, Rangamani '12]

 $\mathfrak{E} = \Phi$

is correct

= 'HRT prescription'

Causal Wedge construction

Bulk causal region naturally corresponding to D[A]:

Bulk causal wedge ◆A

$$\blacklozenge_{\mathcal{A}} \equiv J^{-}[D[\mathcal{A}]] \cap J^{+}[D[\mathcal{A}]]$$

- = { bulk causal curves which begin and end on D[A]}
- Causal information surface $\Xi_{\mathcal{A}}$ $\Xi_{\mathcal{A}} \equiv \partial J^{-}[D[\mathcal{A}]] \cap \partial J^{+}[D[\mathcal{A}]]$
- ullet Causal holographic information $\chi_{\mathcal{A}}$

$$\chi_{\mathcal{A}} \equiv \frac{\operatorname{Area}(\Xi_{\mathcal{A}})}{4 \, G_N}$$

[Hubeny, Rangamani '12]

- In special cases, $\Xi_{\mathcal{A}} = \mathfrak{E}_{\mathcal{A}} \Rightarrow \chi = S_{\mathcal{A}}$, but in general they differ.
- Important Q: what is their interpretation within the dual CFT?

Power of covariant constructs

- 'Natural' geometrical constructs (defined for general bulk spacetimes, independent of coordinates) provide useful candidates for dual of 'natural' quantities in CFT
- \bullet e.g. dual of $\rho_{\mathcal{A}}$? [Bousso, Leichenauer, Rosenhaus; Czech, Karczmarek, Nogueira, Van Raamsdonk;...]
- In generic Lorentzian spacetime, null congruences which define a causal set provide useful characterization of 'natural' bulk regions.

2 options:
...starting from bdy:
...starting from bulk:

$D[\mathcal{A}] \rightarrow \text{Causal Wedge:}$

= future and past causally-separated from bdy region determined by $\rho_{\mathcal{A}}$ [VH & Rangamani]

 $\mathfrak{E} \sim$ Entanglement Wedge:

= spacelike-separated (toward \mathcal{A}) from \mathfrak{E} [Headrick,VH, Lawrence, Rangamani]

Argued to be the correct one: [Dong, Harlow, Wall '16] via QEC & operator algebra [Cotler, Hayden, Salton, Swingle, Walter '17] via recovery channels

Power of covariant constructs

- 'Natural' geometrical constructs (defined for general bulk spacetimes, independent of coordinates) provide useful candidates for dual of 'natural' quantities in CFT
- e.g. dual of $\rho_{\mathcal{A}}$? [Bousso, Leichenauer, Rosenhaus; Czech, Karczmarek, Nogueira, Van Raamsdonk;...]
- In generic Lorentzian spacetime, null congruences which define a causal set provide useful characterization of 'natural' bulk regions.

 $\mathfrak{E} = \Xi$

in AdS₃

$D[\mathcal{A}] \rightarrow \text{Causal Wedge:}$

= future and past causally-separated from bdy region determined by $\rho_{\mathcal{A}}$ [VH & Rangamani]

$\mathfrak{E} \rightarrow$ Entanglement Wedge:

NB: in pure AdS, & for spherical A, these coincide, but not in general.

Causal wedge vs. Entanglement wedge

ullet Even in pure AdS3, these can differ for composite regions ${\cal A}={\cal A}_1\cup{\cal A}_2$

Power of covariant constructs

 $D[\mathcal{A}] \rightarrow \text{Causal Wedge:}$

𝔄 → Entanglement Wedge:

...continued past Ξ : \rightarrow Causal Shadow $Q_{\partial A}$

We can prove the inclusion property [Headrick, VH, Lawrence, Rangamani; Wall]

CW C EW

or equivalently, $\mathfrak{E}\subset\mathcal{Q}_{\partial\mathcal{A}}$

- Consequences:
 - HRT is consistent with CFT causality (= non-trivial check of HRT)
 - Entanglement plateaux
 - Entanglement wedge can reach deep inside a black hole!

Curious features of EE:

- Extremal surfaces can have intricate behavior:
 - ullet can have discontinuous jumps under smooth variations of ${\cal A}$
 - → phase transitions in EE
 - ullet can be topologically nontrivial even for simply-connected regions ${\cal A}$
- Holographic EE seems too local:
 - sharply-specified both on boundary and in bulk
 - but: \rightarrow we can reconstruct the bulk metric (modulo caveats) solely from the set $\{S_{\mathcal{A}}\}$ for a suitable set of $\{\mathcal{A}\}$
- Holographic EE seems too non-local:
 - global minimization condition + homology constraint makes $S_{\mathcal{A}}$ sensitive to arbitrarily distant regions in the bulk...

EE is fine-grained observable!

Example: black hole formed from a collapse

• In contrast to the static (i.e. eternal) black hole, for a collapsed black hole, there is no non-trivial homology constraint on extremal surfaces.

[cf.Takayanagi & Ugajin]

• Hence we always have $S_{\mathcal{A}} = S_{\mathcal{A}^c}$ as for a pure state.

Covariant re-formulations

- Covariance is pre-requisite to construct being physically meaningful, but it need not be unique
 - Distinct geometrical formulations can turn out equivalent (cf. $\mathfrak{E} = \Phi$)

- This redundancy is useful
 - Each formulation can have its own advantages
 - e.g. different properties may be manifest in different formulations (cf. gauge / coordinate choice)
 - Re-formulation can reveal deeper relations (cf. ER=EPR [Maldacena, Susskind])

Covariant re-formulations of HEE

- \mathfrak{E} = Extremal surface
 - (relatively) easy to find
 - minimal set of ingredients required in specification
 - need to include homology constraint as extra requirement

- Φ = Surface with zero null expansions
 - (cf. light sheet construction & covariant entropy bound [Bousso, '99]: Bulk entropy through light sheet of surface $\sigma \leq \text{Area}(\sigma)/4$ $\Phi = \text{surface admitting a light sheet closest to bdy}$

- Maximin surface [Wall, '12]
 - maximize over minimal-area surface on a spacelike slice
 - requires the entire collection of slices & surfaces
 - implements homology constraint automatically
 - useful for proofs (e.g. SSA)

Covariant re-formulations of HEE

All of these are the same geometrical construct.

BUT it does not elucidate the relation to quantum information:

- Where does the information live?
- Mutual information I(A:B) = S(A) + S(B) S(AB) is given by surfaces located in different spacetime regions.
- Geometric proof of SSA ($S(AB) + S(BC) \ge S(B) + S(ABC)$) obscures its meaning as monotonicity under inclusion of correlations

Bit thread picture of (static) EE

- Reformulate EE in terms of flux of flow lines [Freedman & Headrick, '16]
 - ullet let v be a vector field satisfying $\,
 abla \cdot v = 0 \,$ and $\, |v| \leq 1$. Then EE is given by

$$S_{\mathcal{A}} = \max_{v} \int_{\mathcal{A}} v$$

 By Max Flow - Min Cut theorem, equivalent to RT: (bottleneck for flow = minimal surface)

- Useful reformulation of holographic EE
 - flow continuous under varying region (while bottlenecks can jump discontinuously)
 - automatically implements homology constraint and global minimization of RT
 - maximal flow defined even without a regulator (when flux has UV divergence)
 - can be computed more efficiently (via linear programming methods)
 - implements QI meaning of EE and its inequalities more naturally
 - provides more intuition: think of each bit thread as connecting an EPR pair

Spacetime from entanglement?

How does bulk spacetime emerge in the first place?

 Some connected spacetimes emerge as superpositions of disconnected spacetimes
 [Van Raamsdonk; Swingle]

eg. eternal AdS black hole as thermofield double:

$$|\psi\rangle = \sum_{i} e^{-\frac{\beta E_{i}}{2}} |E_{i}\rangle \otimes |E_{i}\rangle$$

• Entanglement builds bridges: 'ER = EPR'

[Maldacena, Susskind]

Einstein-Rosen bridge

Einstein-Podolsky-Rosen entanglement

Changing view of Spacetime

Our concept of spacetime changed enormously in 111 years

Exciting times ahead!

Space Ref (Harvard-Smithsonian CfA)

Hurricane Ivan, NOAA

Thank you!

soihub.org/itschool

RHIC event, LBL

Roller Wave, by William Dalton

Dancing Non-Newtonian fluid by Milo Vosch