APWSW2019 @ YITP

2019 - 2 - 11

Blue-tilted primordial gravitational waves from massive gravity

Shuntaro Mizuno (YITP, Kyoto)

Fujita, Kuroyanagi, SM, Mukohyama Phys. Lett. B789, 215 Fujita, SM, Mukohyama in preparation

Primordial Gravitational Waves (PGWs)

Interferometers can get information of PGWs on various scales !!

Interferometers and ``Standard" PGWs

Planck constrains $\Omega_{GW} \lesssim 10^{-15}$ on interferometers' scales !!

Interferometers and Blue-tilted PGWs

Can we obtain consistent and detectable blue-tilted PGWs ?

Minimal theory of massive gravity (MTMG)

- Properties of MTMG De Felice, Mukohyama `15 Having only 2 propagating DOFs (No scalar & vector gravitons)
 Other points are same as dRGT de Rham, Gabadadze, Tolley `11 ex.) FRW background, tensor perturbations around it,...
- Construction of MTMG

Method to remove extra d.o.f s is based on ADM vielbein

Lorentz violating massive gravity

cf.) Solid inflation, super solid inflation Endlich, Nicolis, Wang `12 Effective Field Theory (EFT) of inflation with space diffs

Set-up

• Decomposition and quantization of h_{ij} with $g_{ij} = a^2 \left[e^h \right]_{ij}$

$$h_{ij}(\tau, \boldsymbol{x}) = \frac{2}{aM_{\rm Pl}} \sum_{\lambda=+,-} \int \frac{\mathrm{d}^3 k}{(2\pi)^3} e^{i\boldsymbol{k}\cdot\boldsymbol{x}} e_{ij}^{\lambda} \left[v_k^{\lambda}(\tau) \hat{a}_{\boldsymbol{k}}^{\lambda} + \mathrm{h.c.} \right]$$

• Equation of motion for the mode function

$$v_k'' + \begin{bmatrix} k^2 + a^2 \mu^2 - \frac{a''}{a} \end{bmatrix} v_k = 0,$$

$$\tau_r \qquad \tau_m \qquad \tau_m$$

Inflation era

$$v_k'' + \left[k^2 - \frac{1}{\tau^2}\left(\nu^2 - \frac{1}{4}\right)\right] v_k = 0 \qquad \nu \equiv \sqrt{\frac{9}{4} - \frac{m^2}{H_{\inf}^2}}$$

• Power spectrum of PGWs

$$\mathcal{P}_{h} \equiv \frac{4k^{3}|v_{k}(\tau)|^{2}}{\pi^{2}M_{\text{Pl}}^{2}a(\tau)^{2}} \simeq \frac{2H_{\text{inf}}^{2}}{\pi^{2}M_{\text{Pl}}^{2}} \left(\frac{k}{k_{\text{UV}}}\right)^{3-2\nu} \quad \text{for} \quad k < k_{\text{UV}}$$
$$(at the end of inflation) \quad k_{\text{UV}} \equiv a_{r}H_{\text{inf}}$$
$$(at the end of inflation) \quad k_{\text{UV}} \equiv a_{r}H_{\text{inf}}$$
$$\text{Jsually, } m/H_{\text{inf}} \quad \text{cannot be} \quad \mathcal{O}(1) \qquad \text{(Higuchi bound)}$$

In MTMG, it is possible (only 2 propagating DOFs)

PGWs are highly blue-tilted (suppressed on large scales)

Evolution of PGWs after inflation

• Graviton energy density

$$T^{(\text{GW})}_{\mu\nu} = \frac{M_{\text{Pl}}^2}{4} \langle \partial_{\mu} h_{ij} \partial_{\nu} h_{ij} \rangle \implies \rho^{(\text{GW})} \propto \frac{1}{2a^2} (h'_{ij})^2 \quad \text{(massless)}$$

analogy with scalar field)
$$\implies \rho^{(\text{GW})} \propto \frac{1}{2a^2} (h'_{ij})^2 + \frac{1}{2}m^2 h_{ij}^2$$

Massive phase

$$\rho_k^{\rm GW} \propto m^2 h_k^2 \propto a^{-2} v_k^2 \propto a^{-3}$$

decays like non-relativistic matter!!

Massless phase

$$\rho_k^{\rm GW} \propto a^{-2} {h'_k}^2 \propto a^{-2} [(a^{-1} v_k)']^2 \propto a^{-4}$$

decays like relativistic matter (as usual)

Power spectrum of PGWs at late time

1. Inflation

From BD-vacuum, GWs are produced and decay on super -horizon scales in same way as $\delta \phi_k$

2. Mass-dominant **3.** Massless

After instant reheating, $k \ll am$ and gravitons behave as matter.

At some point in RD era, gravitons lose the mass to avoid some obs. bounds.

Theoretical prediction for $~\Omega_{GW}$

$$\Omega_{\rm GW}(f) \simeq 10^{-15} \frac{\tau_m}{\tau_r} \left[\frac{H_{\rm inf}}{10^{14} {\rm GeV}} \right]^{\nu + \frac{1}{2}} \left[\frac{f}{2 \times 10^8 {\rm Hz}} \right]^{3-2\nu} f < f_{\rm UV}$$

$$I_{\rm H_{\rm inf}=10^8 {\rm GeV}}$$

$$I_{\rm H_{\rm inf}=10^8 {\rm GeV}}$$

$$I_{\rm UV} = 2 \times 10^8 H_{14}^{1/2} {\rm Hz}$$

$$H_{14} \equiv H_{\rm inf}/(10^{14} {\rm GeV})$$
• Constraints
$$\frac{\tau_m}{\tau_r} \lesssim 10^{10} H_{14}^{-2}, \quad ({\rm BBN})$$

$$\nu \lesssim \frac{75 - \log_{10}(H_{14}^{1/2} \tau_m/\tau_r)}{50 + \log_{10}(H_{14})}. \quad ({\rm CMB})$$

$$f [{\rm Hz}]$$

Primordial tensor non-Gaussianity

• How to distinguish scenarios with detectable PGWs ? PGWs from vacuum fluctuations of metric are almost Gaussian

Maldacena `02

Stochastic GWs by uncorrelated astrophysical sources are also almost Gaussian (Central limit theorem)

Tensor non-Gaussianity is powerful discriminator

• Primordial tensor bispectrum

 $\langle h_{i_1j_1}(\tau, \mathbf{k}_1) h_{i_2j_2}(\tau, \mathbf{k}_2) h_{i_3j_3}(\tau, \mathbf{k}_3) \rangle \equiv (2\pi)^3 \delta(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3) B^h_{i_1j_1i_2j_2i_3j_3}(k_1, k_2, k_3)$

Depending on amplitude, shape of triangle, and chiralities

 $\langle h_{i_1 j_1}(\tau, \mathbf{k}_1) h_{i_2 j_2}(\tau, \mathbf{k}_2) h_{i_3 j_3}(\tau, \mathbf{k}_3) \rangle = i \int_{-\infty}^{\tau} \mathrm{d}\eta \langle [H_{\mathrm{int}}(\eta), h_{i_1 j_1}(\tau, \mathbf{k}_1) h_{i_2 j_2}(\tau, \mathbf{k}_2) h_{i_3 j_3}(\tau, \mathbf{k}_3)] \rangle$

Shape of tensor bispectrum

Interaction Hamiltonian at third order

Both are maximized in the squeezed limit

Detectability of tensor bispectrum by LISA

• Amplitude of tensor bispectrum

$$\frac{(k_1k_2k_3)^2 B_h^{\text{equil}}}{[\mathcal{P}_h(k_1)\mathcal{P}_h(k_2)\mathcal{P}_h(k_3)]^{1/2}} \simeq \left(\frac{g_{\text{inf}}}{H_{\text{inf}}^2}\right) \left(\frac{H_{\text{inf}}}{10^{-3}M_{\text{Pl}}}\right)$$

(``test of non-Gaussianity" for LISA) $B_h = \delta_{j_1 i_2} \delta_{j_2 i_3} \delta_{j_3 i_1} B_{i_1 j_1 i_2 j_2 i_3 j_3}^h$ Bartolo et al `18

chance for LISA to detect for $g_{inf} \ge 10^{-3} H_{inf} M_{Pl}$ If curvature perturbation is generated by single-field inflation

$$\frac{H_{\text{inf}}}{M_{\text{Pl}}} = \sqrt{8\pi\epsilon\mathcal{P}_{\zeta}} \approx 10^{-4} \left(\frac{\epsilon}{0.1}\right)^{\frac{1}{2}} \left(\frac{\mathcal{P}_{\zeta}}{2\times10^{-9}}\right)^{\frac{1}{2}} \qquad g_{\text{inf}} \ge 10H_{\text{inf}}^2$$

But for models with suppressed curvature perturbation, $g_{
m inf}/H_{
m inf}^2\sim {\cal O}(1)~~{
m is~possible}$

Conclusions

• PGWs gives information of scales different from CMB, which is very helpful to distinguish and/or constrain inflation models

• Highly blue-tilted PGWs can be detected by interferometers, even if their signal is not observed on the CMB scales

• We construct a consistent model producing highly blue-tilted and largely amplified PGWs based on MTMG

• We also calculate the non-Gaussianity of PGWs for the model and discuss the detactability by LISA

Discussions

- Squeezed limit of tensor bispectrum **Consistency Relation (CR)** for adiabatic tensor perturbations $\lim_{q \to 0} \langle h_{\boldsymbol{q}}^{s_1} h_{\boldsymbol{k}}^{s_2} \ h_{-\boldsymbol{k}}^{s_3} \rangle' = \frac{3}{2} \delta^{s_2 s_3} \mathcal{P}_h(q) \mathcal{P}_h(k) e_{ij}^{s_1}(q) \frac{k^i k^j}{k^2}$ Maldacena `02
 - If CR holds, effect of superhorizon mode is unobservable Pajer, Schmidt, Zaldarriaga `13
 - In solid inflation, CR breaks and there are observable effects

Bordin, Creminelli, Mirbabayi, Norea `16

$$\mathcal{P}_{h,\bar{h}}(k) = \mathcal{P}_{h,0}(k) \left(1 + \mathcal{Q}_{ij} \frac{k^i k^j}{k^2} \right) \qquad \qquad \mathcal{Q}_{ij} \propto f_{\mathrm{NL}}^{h,\mathrm{squeezed}}$$

• Relation between curvature perturbation and PGWs

Thank you very much !!