Primordial black holes in canonical single field inflation

Hayato Motohashi (YITP)

2019.02.11 Asian-Pacific Winter School and Workshop on Gravitation and Cosmology

Primordial black holes (PBHs)

Zel'dovich, Novikov (1966) Hawking (1971) Carr (1975)

Reviews

Carr et al, 0912.5297 Carr et al, 1607.06077 Sasaki et al, 1801.05235 Bird et al, 1603.00464 Clesse et al, 1603.05234 Sasaki et al, 1603.08338

- GW source

Comoving scale

Comoving scale

Leading-order slow-roll approx.

$$\Delta_{\zeta}^2 \approx \frac{H^2}{8\pi^2 \epsilon_H}$$

Leading-order slow-roll approx.

$$\Delta_{\zeta}^2 \approx \frac{H^2}{8\pi^2 \epsilon_H}$$

HM, Hu, 1706.06784 PBH Δ_{ζ}^2 $$\begin{split} & \Delta_\zeta^2 \sim O(1) \\ & \epsilon_H \sim 10^{-11} \end{split}$$ $\Delta \ln \epsilon_H$ CMB End of inflation $\begin{aligned} &\Delta_{\zeta}^2 \sim 10^{-9} \\ &\epsilon_H \sim 10^{-2} \end{aligned}$ $\epsilon_H \sim O(1)$ k ΔN $\epsilon_H \equiv -\dot{H}/H^2$ $\beta \approx \operatorname{erfc}\left(\frac{\zeta_c}{\sqrt{2}\Delta_{7}}\right) \approx 10^{-9} \left(\frac{\Omega_{\text{PBH}}h^2}{0.12}\right) \left(\frac{M}{M_{\odot}}\right)^{1/2} \quad \epsilon_H \ll 1 \text{ and}$ $\Delta N \approx 18 - \frac{1}{2} \ln \frac{M}{M_{\odot}}$ $\left|\frac{d\ln\epsilon_H}{d}\right|\ll 1$?

No go for slow roll

 $M_{\rm min} \approx 10^{-21} M_{\odot}$: Smallest PBH mass that does not evaporate by matter-radiation equality barring merging and accretion \Rightarrow Lower bound on SR violation

No go for slow roll

Various approximations

• Standard SR :
$$\Delta_{\zeta}^2 \approx \frac{H^2}{8\pi^2 \epsilon_H}\Big|_{k\eta=1} \implies \text{Not good}$$

Various approximations

• SR-V: $\Delta_{\zeta}^{2} \approx \frac{V}{24\pi^{2}\epsilon_{V}}\Big|_{k\eta=1} \Rightarrow \text{Particularly bad}$ $\epsilon_{H} \approx \epsilon_{V}, \ \frac{d\phi}{dN} = -\frac{V'}{V}$ • Standard SR: $\Delta_{\zeta}^{2} \approx \frac{H^{2}}{8\pi^{2}\epsilon_{H}}\Big|_{k\eta=1} \Rightarrow \text{Not good}$

Exact relation

$$\frac{\epsilon_V}{\epsilon_H} = \left(1 + \frac{1}{2(3 - \epsilon_H)} \frac{d \ln \epsilon_H}{d N}\right)^2 \qquad \qquad \epsilon_H \equiv -\dot{H}/H^2 \\ \epsilon_V \equiv (V'/V)^2/2$$

Case study 1: Inflection model

Garcia-Bellido, Morales, 1702.03901

Ezquiaga, Garcia-Bellido, Morales, 1705.04861

Ultra slow-roll inflation

Kinney, gr-qc/0503017

SR Violation: $\frac{d\ln\epsilon_H}{dN} = -6$

Namjoo, Hassan, Sasaki, 1210.3692 Martin, HM, Suyama, 1211.0083

- Violation of non-Gaussianity consistency relation
- Growing mode of ζ_k on superhorizon scales

$$N = 0.00$$

Case study 1: Inflection model

Case study 1: Inflection model

Case study 1: Inflection model

For sufficient suppression in inflection model, a fine-tuned shape of the potential is required.

Various approximations

• SR-V: $\Delta_{\zeta}^{2} \approx \frac{V}{24\pi^{2}\epsilon_{V}}\Big|_{k\eta=1} \implies \text{Particularly bad}$ $\epsilon_{H} \approx \epsilon_{V}, \ \frac{d\phi}{dN} = -\frac{V'}{V}$ $\text{Standard SR: } \Delta_{\zeta}^{2} \approx \frac{H^{2}}{8\pi^{2}\epsilon_{H}}\Big|_{k\eta=1} \implies \text{Not good}$

Various approximations

• SR-V: $\Delta_{\zeta}^{2} \approx \frac{V}{24\pi^{2}\epsilon_{V}}\Big|_{k\eta=1} \implies \text{Particularly bad}$ $\epsilon_{H} \approx \epsilon_{V}, \ \frac{d\phi}{dN} = -\frac{V'}{V}$ $\text{Standard SR: } \Delta_{\zeta}^{2} \approx \frac{H^{2}}{8\pi^{2}\epsilon_{H}}\Big|_{k\eta=1} \implies \text{Not good}$

• Optimized SR :
$$\Delta_{\zeta}^2 \approx \frac{H^2}{8\pi^2 \epsilon_H}\Big|_{k\eta=x_1} \implies \text{Works well}$$

HM, Hu, 1503.04810, 1704.01128

- Minimize truncation error by optimization $k\eta = x_1$
- $-x_1 = \frac{\gamma}{3} \ln 2 \gamma_E \approx 2.89$: model independent
- Apply to general class of single-field inflation e.g. Horndeski, GLPV, subclass of DHOST

HM, Hu, 1503.04810, 1704.01128

 $x \equiv ks$

Optimized slow-roll approximation

- 1. Formal solution of Mukhanov-Sasaki equation by using Green function (Generalized SR) Stewart, astro-ph/0110322
- 2. First order iteration

$$\ln \Delta^2 (k) = -\int_0^\infty \frac{dx}{x} \frac{W'(x)G(\ln x)}{1}$$
 Sound horizon

Model-indep window function Source function (model)

HM, Hu, 1503.04810, 1704.01128

Optimized slow-roll approximation

- 1. Formal solution of Mukhanov-Sasaki equation by using Green function (Generalized SR) Stewart, astro-ph/0110322
- 2. First order iteration $x \equiv ks$ $\ln \Delta^2(k) = -\int_0^\infty \frac{dx}{x} \frac{W'(x)G(\ln x)}{\uparrow}$ Sound horizon

Model-indep window function Source function (model)

3. Taylor expand $G(\ln x)$ around the evaluation point $\ln x_f$

$$\ln \Delta^{2}(k) = G(\ln x_{f}) + \sum_{p=1}^{\infty} q_{p}(\ln x_{f})G^{(p)}(\ln x_{f})$$

Model-indep, polynomial
SR: $\ln x_{f} = 0$ horizon exit

HM, Hu, 1503.04810, 1704.01128

 $x \equiv ks$

Optimized slow-roll approximation

- 1. Formal solution of Mukhanov-Sasaki equation by using Green function (Generalized SR) Stewart, astro-ph/0110322
- 2. First order iteration

$$\ln \Delta^2 (k) = -\int_0^\infty \frac{dx}{x} \frac{W'(x)G(\ln x)}{1}$$
 Sound horizon

Model-indep window function Source function (model)

3. Taylor expand $G(\ln x)$ around the evaluation point $\ln x_f$

$$\ln \Delta^2 (k) = G(\ln x_f) + \sum_{p=1}^{\infty} q_p(\ln x_f) G^{(p)}(\ln x_f)$$

Model-indep. polynomial
$$SR: \ln x_f = 0 \text{ horizon exit}$$

4. Truncate at *p* and optimize $\ln x_f$ so that $q_{p+1}(\ln x_f) = 0$

OSR: $\ln x_f \neq 0$

HM, Hu, 1503.04810, 1704.01128 Optimized slow-roll approximation

Consider general inflation model with feature $\sim \Delta N$

HM, Hu, 1503.04810, 1704.01128 Optimized slow-roll approximation

Consider general inflation model with feature $\sim \Delta N$

 ∞

$$\ln \Delta^2 = G(0) : \text{correction} = O(q_1(0)G'(0))$$

$$\ln x_f = 0 : \text{horizon exit} \qquad q_1(0) \approx 1.06 \qquad 1/\Delta N$$

$$\simeq 0.35 \text{ for } \Delta N \sim 3$$

HM, Hu, 1503.04810, 1704.01128 Optimized slow-roll approximation

Consider general inflation model with feature $\sim \Delta N$

 ∞

$$\ln \Delta^2 = G(0) : \text{correction} = O(q_1(0)G'(0))$$

$$\lim_{f \to 0} x_f = 0 : \text{horizon exit} \qquad \begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \simeq 0.35 \text{ for } \Delta N \sim 3 \end{array}$$

 $\ln \Delta^2 = G(\ln x_1) : \text{correction} = O(q_2(\ln x_1)G''(\ln x_1))$ $\lim_{\mathcal{N}} x_f = \ln x_1 \approx 1.06 \text{ with } q_1(\ln x_1) = 0 \qquad \mathcal{N} \qquad \begin{array}{c} & \swarrow \\ q_2(\ln x_1) \approx -0.36 & 1/\Delta N^2 \end{array}$ $\approx 0.04 \text{ for } \Delta N \approx 3$

HM, Hu, 1706.06784 Case study 2: Running mass model

Drees, Erfani, 1102.2340

HM, Hu, 1706.06784 Case study 2: Running mass model

Slow-roll violation

OSR still works well

HM, Hu, 1706.06784 Case study 3: Slow roll step model

Parametrize $\ln \epsilon_H$ directly

$$\ln \epsilon_H = C_1 + C_2 N - C_3 \left[1 + \tanh\left(\frac{N - N_s}{d}\right) \right]$$

HM, Hu, 1706.06784 Case study 3: Slow roll step model

Parametrize $\ln \epsilon_H$ directly

$$\ln \epsilon_H = C_1 + C_2 N - C_3 \left[1 + \tanh\left(\frac{N - N_s}{d}\right) \right]$$

Summary

- No go for slow roll: HM, Hu, 1706.06784
 PBH production requires O(1) slow-roll violation
 - ⇒ Previous analyses based on slow-roll approx. need reconsideration.

HM, Hu, 1503.04810

- Improved approximation: Optimized slow roll ^{1704.01128}
 - ⇒ Remains a good description for models with 10⁷ amplification of Δ_{ζ}^2 in $\Delta N > 10$. ⊃ PBH = (part of) DM or GW events scenar
 - \supset PBH = (part of) DM or GW events scenarios
 - Passaglia, Hu, HM, 1812.08243
- No go is robust even with non-Gaussianity
 ← Next talk by Samuel Passaglia