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Abstract

We find that

- the Hanford and Livingston detectors of Advanced LIGO
derive distinct posterior probability distribution of binary tidal
deformability A~ of the binary-neutron-star merger GW170817.
- significantly multimodal distribution associated with a
disconnected highest-posterior-density 90% credible interval
from the Livingston detector.

- the distribution derived by the Livingston detector changes

irregularly when we vary the maximum frequency of the data
used In the analysis.



Introduction

Tidal deformabillity of neutron stars (NSs) can be a key quantity
to understand the hitherto-unknown nature of supranuclear
density matter. The relation between the mass and tidal
deformabillity is uniquely determined by the NS EOS as the
mass-radius relation Is.

Thus, simultaneous measurements of the mass and tidal
deformability are eagerly desired, and GWs from BNS mergers
give us a perfect opportunity. S
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GW170817 enabled us to measure the tidal
deformability for the first time

These quantities constrain the nuclear EOS of NS matter.
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Independent analysis of GW170817
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With the reasonable assumption of a common, causal EOS
for both NSs; this is effectively implemented by assuming that the
star’'s dimensionless tidal deformabillities are determined by the
binary’s mass ratio g by A1//A2 = gb.

Uniform: mi2~U[1, 2]Msun

DN
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S: mi2~N(u=1.33, 0=0.09)Msun (Gaussian prior, fit to masses of NSs observed in

S systems)
actic NSs: mi~N(u=1.54, 0=0.23)Msun, m2~N(u=1.49, 0=0.19)Msun (fit to

observed recycled and slow pulsars in the Galaxy)



Improved analysis of GW17081 7[|_VC ArXiv-1805.11579)
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Recalibrated data release of GW events

GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by
LIGO and Virgo during the First and Second Observing Runs

The LIGO Scientific Collaboration and The Virgo Collaboration

Improved analysis of GW170817 with new waveform models.
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Our independent reanalysis of GW170817

- We analyze the Advanced LIGO twins, the Hanford and
Livingston detectors, separately.

- We vary the upper limit fmax to investigate its influence

on parameter estimation. (the lower limit of the frequency
to be 23Hz)

basically follow those adopted in the improved LVC analysis (arXiv:1805.11579)
- Nested sampling implemented in LALInference.

-+ The sky position is fixed to the location determined by optical
followup observations.

- post-Newtonian waveform (TaylorF2)

+ Low-spin prior (x<0.05)



Combined analysis of the Advanced LIGO twins, the
Hanford and Livingston, and Virgo |fmax=min[fisco, 2048 Hz]
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Separate analysis of the Advanced LIGO twins, the

Hanford and Livingston detectors fmax=min[fisco, 2048 HZz]
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Separate analysis of the Advanced LIGO twins, the
Hanford and Livingston detectors fmax=min[fisco, 2048 HZz]
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Dependence on maximum frequency, fmax

The Hanford-only distribution
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Dependence on maximum frequency, fmax

The Hanford-only distribution
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Dependence on maximum frequency, fmax

The Hanford-only distribution
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Dependence on maximum frequency, fmax

The Hanford-only distribution shrinks monotonically and
appears to become narrowly peaked as Tmax INnCreases.
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Information about parameters is contained in different

Measurablhty frequency ranges.

The terms Iin the Fisher matrix that determine the measurabillity
are essentially proportional to integrals of
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Dependence on maximum frequency, fmax
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Dependence on maximum frequency, fmax

fmax=800Hz (L)
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Dependence on maximum frequency, fmax
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Dependence on maximum frequency, fmax
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Dependence on maximum frequency, fmax

0.0025-
0.0020-

LL. 0.0015-
QO

o

0.0010
0.00057 [;

0.0000-

The Hanford-only distribution shrinks monotonically and
appears to become narrowly peaked as Tmax INnCreases.

|
Results from the Livingston-only data show

more Irregular change with respect to the
changes of Tmax. These peculiar features
Indicate that the high-frequency data of
the Livingston detector are not very helpful
to determine A of GW1/70817.
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Summary

- We show that the Advanced LIGO twins derive distinct
posterior probability distribution of A.

- Specifically, the distribution derived by the Livingston
detector exhibits significant multimodal structures favoring
larger values of A than those derived by combing the twins.

- The distribution of the Livingston detector does not behave
smoothly with respect to the variation of the tmax.

- The discrepancy and irregular behavior suggest that an in-
depth study of noise properties might improve our
understanding of GW1 /70817 and future events.



Discussion

-+ Qur analysis suggests that the noise in the high-frequency
region of the Livingston data somehow corrupted information
about tidal deformability of GW1/70817.

- Although the multimodal structure can appear simply
pecause of particular noise realization, it is a bit tricky that the
nosterior density distribution does not become narrow as fmax
INncreases.




It may result from a specific noise realization, as similar
results have been seen with injected waveforms with

simulated Gaussian noise.
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They inject the same BNS signal into ten different noise realizations.

[Wade, et al.,, PRD 89, 103012 (2014)]
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Removing the glitch (instrumental noise transient)
surrounding GW170817
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A short instrumental noise transient appeared in Livingston 1.1s before the
coalescence time.

Applied a modeling of the glitch and removing it.

We suspect that a residual of the glitch in the Livingston data at
about a half second before merger or removing high-frequency
part of signal causes multimodal structure of A.



- [t should be emphasized that the 90% credible intervals are
consistent between the twins.

- What we may safely conclude is that the posterior probability
distribution is exceptionally distinct for binary tidal
deformability and that the Livingston data are not very useful
for constraining its value in the case of GW1/70817.

- Secure parameter estimation will be helped by unambiguous
detection by other instruments such as Advanced Virgo or
KAGRA. However, Iif the irregular multimodal behavior and
associated loss of information is typical for detections with a
moderate signal-to-noise ratio, accurate determination of tidal
deformability will remain challenging unless its origin is
iIdentified.

Thank youl!
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