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~ ~=Generalized Uncertainty.Princip\e




- End stage of solar-mass stars

Supported by electron
degenerative pressure

Degenerate matter

(helium, carbon or other Normal gas
possible reaction (50 km thick)
products)

5000 to 6000 km




/Heuristic Derivation of White Dwarf Properxrties

Textbook material:

Total kinetic energy of a non-relativistic white dwarf

Number of electron — 9 9

NA Nh
E, = 5 b VSYD; AxAp ~ h
Number density, Me (Az)?2me
n = ﬁ — M 1 % 1/3
V. Vm, \ Ax ~n 3 = (N)
NE2ns  NK 2 M3 B
Ek = = (M%me SR_Q) — 3 .



/Heuristic Derivation of White Dwarf Properxrties

To withstand gravitational collapse, we must balance the kinetic energy with
gravitational binding energy

G M?
2 2 2 239 E ~ :Ek
Ek:Nh'n,S :Nh (M%me—gR_g): M:;h | | 9’ R
2Mee 2Me 2m3 R2
h2
R ~ 5 - Degenerative matter
2mé GM s




(Ultra)Relativistic Case

E;, = N(v — 1)mec®, p=ymev.

Ax meV
GM? (M \*_ | M3he
T N ( V) he| ~ —
e ] me R
3 Chandrasekhar limit Subrahmanyan
M 1 hc '\ ? /Chandrasekhar mass Chandrasekhar
Ch ™~ @ 5 y (1930) (1910-1995)
© 1983 Nobel Prize in Physics
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White Dwarfs with GUP

hAx 4oy L2
Az Ap ~ L?Ap? Ap~ —— [14+14/1 - —FL
vAp ~ h+al;Ap®/h = p 2al? A2
e e e 2
Non-relativistic case: . 2 3 taL2M3
M3 ~ . R [14+,]1—-—
R+ 8Gme a? L \ me R?

Mohamed Moussa, “Effect of Generalized Uncer-
tainty Principle on Main-Sequence Stars and White‘

Dwarfs”, Adv. High Energy Phys. 2015 (2015) 343284,
/ arXiv:1512.04337 [physics.gen-ph)].

Reza Rashidi, “Generalized Uncertainty Principle and the
Maximum Mass of Ideal White Dwarfs”, Annals Phys.
374 (2016) 434, [arXiv:1512.06356 [gr-qcl].

.




Restoring Chandrasekhar Limit

A simple fix! Simply Choose a < 0 AzAp ~ h+ aL2Ap*/h

Yen Chin Ong, "Generalized Uncertainty
Principle, Black Holes, and White Dwarfs:
4- A Tale of Two Infinities", JCAP 09 (2018)
015, [arXiv:1804.05176 [gr-qc]].



https://arxiv.org/abs/1804.05176

Negative GUP parameter

Petr Jizba, Hagen Kleinert, Fabio Scardigli, “Uncer-

PreViOUS|y Sugge Sted in tainty Relation on World Crystal and its Applications
to Micro Black Holes”, Phys. Rev. D 81 (2010) 084030,

larXiv:0912.2253 [hep-th]].

T_
GM?

Also, if one takes the generalized Hawking temperature, M 2 (1 \/1 ahc )
- Adar a B

and make the reasonable assumption that one should be able to obtain it from Wick-
rotating a deformed static Schwarzschild metric with metric coefficient

2M M?
git=—|1——+e—

r r2
Fabio Scardigli, Roberto Casadio, “Gravitational tests of
then for || < 1, we have the Generalized Uncertainty Principle”, Eur. Phys. J. C

75 (2015) 425, arXiv:1407.0113 [hep-th].
2
M
o = —4r?e? (— < 0.



How to Understand Negative Alpha Correction?

At large enough energy,
RHS becomes smaller:
vahishes at Planck scale!

hG
CZL%APZ B a (C_B) Apz

h h
- E(E_p)z _
[y [ C3 C B

Planck Scale Physics Becomes Classical! aG ( 1 ) he® _ op
c3\c2) ¢

Petr Jizba, Hagen Kleinert, Fabio Scardigli;
Bernard J. Carr, Jonas Mureika, Piero Nicolini




Previously in Literature:

* h as a dynamical field that goes to zero in the Planckian limit (Hossenfelder)

* Asymptotic Safe Gravity: If Planck mass is fixed, equivalent to zero G limit
since G = hc /M.

* Singularity of dilaton charged black hole (naive but suggestive):

“l...|] the string coupling is becoming very weak near the singularity.
As we have discussed, we have no right to trust this solution near
the singularity, but its difficult to resist speculating about what
it might mean if the exact classical solution had a similar behav-
ior. It would suggest that, contrary to the usual picture of large
quantum fluctuations and spacetime foam near the singularity,
quantum effects might actually be suppressed. The singularity
would behave classically.”

Gary T. Horowitz, “The Dark Side of String Theory:
Black Holes and Black Strings”, [arXiv:hep-th/9210119].




Hawking Evaporation with GU¥P

5 Ronald J. Adler, Pisin Chen, David |. Santiago,
T — Mc 1 _ \/1 B ahc “The Generalized Uncertainty Principle and

G M2 Black Hole Remnants”, Gen. Rel. Grav. 33 (2001)
2101, arXiv:gr-qc/0106080

SBH A

Black hole remnant!

=]
=



Does Negative a Affect Black Hole Phys\cs?

Yes, but OK!

T[a>0]:%(1—\/1—%>

M o
T[a<0]:_4|(}f’ﬂ' (1— 1+W)

Small mass limit:

M +\/|af 1
Tla < 0] ~ = < o0 B S
| | dlajm M A1/ |a M



Does this Affect Black Hole Physics?
Yes, but OK!

But how to make

"g sense of the final
M e . temperatures?
dar M?2

Tla > 0] =

M ol
T[a<0]:_4|(}f’ﬂ' (1— 1+W)

Small mass limit:

Tl < 0] ~ M \/H: !

dlajr M

< 00

A/ |




Lifetime of a Black Hole

Hawking temperature: M

Stefan-Boltzmann Equation:

Thus the lifetime of a black hole is of order M3.
Lifetime for solar mass black hole = O(10%7) years



an
dt

7 8
5.x10 1.x 10

FIG. 2: Mass evolution of Schwarzschild black holes with no GUP cor-
rection (black, middle curve), positive GUP correction (blue, left curve),
and negative GUP correction (red, right curve). The positive GUP cor-
rection leads to a remnant in finite time, while negative GUP correction
yields infinite lifetime. These contrast with the usual case without GUP
correction, in which the black hole completely evaporates in finite time.

M af
T T @ami Ve

so as M becomes sufficiently small, we have

which leads to

dM M?
dt (4m)2a?’
25674 a?
M = M
0 (25671'4052 + Mot) !

Yen Chin Ong, “An Effective Black Hole
Remnant via Infinite Evaporation Time
Due to Generalized Uncertainty
Principle”, JHEP 10 (2018)

195, [arXiv:1806.03691 [gr-qgc]].



https://arxiv.org/abs/1806.03691

Still ... Not so satisfying?

Despite its virtue in preventing arbitrarily large white dwarf, and being consistent
with some models of quantum gravity, such a GUP lacks theoretical derivation.

30
i

Can we resolve the white dwarf problem
with another approach?

A0

=3
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= " Us Consider the Actual Universe . —

Years after the Big Bang
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What Happens.in de Sitter Space?

Extended Uncertainty Principle

L[, h(Az)*
AxAp > 5 h+ 72

temperature via the heuristic method, f = +3

emark. 10 recover the correc acC ole h
R k: T th t black hol c f for Si- AxAp > E(1 o C(Ax)z)

B. Bolen, M. Cavaglia, (Anti-)de Sitter Black Hole Thermodynamics and the Generalized Uncertainty Principle, Gen. Relativ. Grav. 37, 1255 (2005), arXiv:gr-
qc/0411086v1.

M.l. Park, The Generalized Uncertainty Principle in (A)dS Space and the Modification of Hawking Temperature from the Minimal Length, Phys. Lett. B659,

698 (2008),
arXiv:0709.2307v4 [hep-th].

C. Bambi, F. R. Urban, Natural Extension of the Generalised Uncertainty Principle, Class.Quant.Grav.25:095006 (2008), arXiv:0709.1965v2 [gr-qc].

S. Mignemi, Extended Uncertainty Principle and the Gometry of (Anti)-de Sitter Space, Mod.Phys.Lett. A25 (2010) 1697-1703, arXiv:0909.1202v2 [gr-qc].




Extended Generalized Uncertainty Principle

1 LZ(Ap)? h(Ax)?
AxAp > — P
xAp 5 h+ « ; + 73
4 P2 %
i e [ [ (o)
2amd G2 \ ¢ L me R?
1
. 1
V2 | L2M3mé — L2M3 +/Z(a,3,M,L) | -
RlaQ(M) T 2 2 ?
Bmé
where

8

F(a,B,M,L) = L*(Mm.)3 — 4L*(Mm.)3af
—2LAM2mE + LM



Extended Generalized Uncertainty Principle

1
AxAp > 5

G

Yen Chin Ong, Yuan Yao,
“Generalized Uncertainty
Principle and White Dwarfs
Redux: How Cosmological
Constant Protects Chandrasekhar
Limit”,

Phys. Rev. D 98 (2018) 126018,
[arXiv:1809.06348 [gr-qgc]].

QG-correction  Classical geometry-correction

4 p2 2
E 'R 1 14Gha(B+M )

2 3 5 2
2amd G2 \ ¢ L me R?

1

V2 {L2M§m§ ~ [2M% £ \/F(a, B, M, L)} ’

2
Bmé

where

8

F(a,B,M,L) := L*(Mm,)3 — 4L*(Mm.)

wloo

af
_OLAMZm3 1 LAME.


https://arxiv.org/abs/1809.06348
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FIG. 2: The mass-radius relationship of an ultra-relativistic white
dwarf with EGUP correction, R;(M). Without EGUP correction, it
is simply the vertical Chandrasekhar limit. The effect of EGUP is to
cause sufficiently small white dwarfs to deviate away from the Chan-
drasekhar limit, but note that no star can exist above the limit. Red
curve and blue curve correspond to @ = 1 and a« = —1 respectively,
they pretty much coincide with each other. Varying the magnitude of
a up to 10*" does not change the result by much.
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FIG. 4: The mass-radius relationship of an ultra-relativistic white
dwarf with EGUP correction, log[R1(M)]. Red curve and blue curve
correspond to @ = 1 and a = —1 respectively, they are still indistin-
guishable even in log plot. The dashed wvertical line corresponds to
M = Mcy,.
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The mass-radius relationship of an ultra-relativistic white
dwarf with EGUP correction, log[R1(M)].

Solid curves are for o« > 0
The curves, from top to bot-
—10'13, —10112%, —4 x 10119, 4 x

10119 10112 1013, respectively. The dashed vertical line corresponds

to M = MCh-

4



A Bound On Cosmological Constant

M 3 < 1

R?m¢ J\[ ; me

. # still large compared to the required ~10~ 122 , but smaII
ﬁ*‘ compared to the ‘atural” value o(1)™

. _v_’":;



- Talk Based On

* Yen Chin Ong, "Generalized Uncertainty Principle, Black Holes, and White
Dwarfs: A Tale of Two Infinities", JCAP 09 (2018) 015, [arXiv:1804.05176 [gr-

acll.

* Yen Chin Ong, “An Effective Black Hole Remnant via Infinite Evaporation Time
Due to Generalized Uncertainty Principle”, JHEP 10 (2018)
195, [arXiv:1806.03691 [gr-gc]].

* Yen Chin Ong, Yuan Yao, “Generalized Uncertainty Principle and White Dwarfs
Redux: How Cosmological Constant Protects Chandrasekhar Limit”, Phys. Rev.
D 98 (2018) 126018 [arXiv:1809.06348 [gr-qc]].

* Yuan Yao, Meng-Shi Hou, Yen Chin Ong, “A Complementary Third Law for Black
Hole Thermodynamics”, [arXiv:1812.03136 [gr-qc]].
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https://arxiv.org/abs/1809.06348
https://arxiv.org/abs/1812.03136
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Heisenberg’s Microscope



Heisenberg’s Microscope with Gravitational

Ronald J. Adler, “Six Easy Roads to the Planck Scale”,

CO rreCt | O n Am. J. Phys. 78 (2010) 925, arXiv:1001.1205 [gr-qc].
Photon energy E = hv, so effective mass M =hv/c*=h/c\

exerts force to accelerate particle: additional fuzziness!

Aa, =~ GM . roye = G(h/\C) 1y, N

Ax ~ Aa teff — G(h/)\.C) (teff/reff) ) Feff/ beff ™ € gravity
wave nature

210, +
2 2
Ax, = Gh/\c® = (Ghic)/\ = €p/I\
of light

h A
Axm(Ap)H?z( ﬁp) ; Ap

I+

Also, black hole formation?



7\
= “&5;,‘— -

=-_—-»~ i _*

The Schwarzschild metric is ds? = — (1 _

26M\ 1
dt® + (1 — ) dr? + r2dQ*

with the event horizon at r, = 2GM /c?.

Heisenberg’s Uncertainty Principle then yields, if we identify Ax ~ r, ,

the following approximation
h h hc*?

_J_‘b,p ~ ~ —
2Ax  2r, 4AGM

Suppose now we interpret the quantum uncertainty in the kinetic energy

of the emitted particles as due to thermal agitation, the uncertainty in

the energy of photons emitted during Hawking evaporation is identified with |

hcd
4GM

AE = Apc =

A
B ~ “" 8nkyGM

where
hel

T —
BH ™ 8k, GM

is the Bekenstein-Hawking temperature of the Schwarzschild black hole.

e,




—  Hawking Radiation Does Not. = _

B —

““Originate from Near Horizon\ —=
de Broglie wavelength:

21h

A= 7 Quantum thermodynamics
Mechanics
Wavelength of Hawking Particle: E =pc E =kgT
y 3 2nth  2mhc 87TkBGM
A T " kgT/c kg Ac3
= 8r2 - 22 = 82, ~ 797,
c?

S. B. Giddings, “Hawking radiation, the Stefan Boltzmann law, and
unitarization,” Phys. Lett. B754 (2016) 39, 1511.08221.




A Comparlson. Uncertalnty Prlnmp\eaon Un\\‘. C\rc\e -

1963: D. Judge published a single page, ultra-dense paper titled ”On the
Uncertainty Relation for L, and ¢ ” [Physics Letters, Vol. 5, No. 3,
1963]: (Details in 1964)

IL NUOVO CIMENTO Vor. XXXI, N. 2 16 Gennaio 1964

On the Uncertainty Relation for Angle Variables.

D. JUDGE

University College - Dublin

h
(vicevuto il 10 Luglio 1963) AXAP = = (1 i C(Ax)z)

Summary. — The uncertainty relation between the orbital angular
momentum component L, and the corresponding angle ¢ is discussed.
The uncertainty for an angle variable is defined. The formula AL,-Ag > 4,
which is sometimes quoted, is shown to be incorrect, and an alternative
relation, in full accord with the Heisenberg Uncertainty Prineciple, ix
derived.




Theurem: Assume that the self-adjoint operators A and B admits variances, then

H.P. Robertson,

1 n 1
Phys. Rev. 34 (ﬂﬂ)z(ﬂg)z = E(lpl{ﬁ; B}llb)z + 1(']["1_"1!’)2;

(1929) 163.
where A== A — (A); B == B — (B): [EL ﬁ] = il’, and {-,-} is the anti-commutator.

Corollary (Heisenberg’s Uncertainty Principle): For the position operator X and momentum

operator P = —ih d/0x in position space basis, we have [X, P| = ih, and so
“Canonical” / B2 R

1 2 2
Commutation Relation (AX)?(AP)? = Z({X,P})z - T > R
That is, h
with equality attained if and only if Ee: aKIso 47 Phue 44
. & .H. Kennard, Z. Phys.
(1) X|¢) = cP|Y), c € C, and (1527) 326

(2) (W|[{X, P}|y) =




It can be shown that angular
momentum and angular coordinate

satisfies the canonical commutation WHAT ARE YOU DOING?
relation: 6.L] = ih, L = —ih i : SPINNING COUNTERCLOCKMISE
. . o B ~ EACH TURN ROBS THE PLANET
: [ OF ANGULAR MOMENTUM
Yet can find states such that AL, is [ e el
sufficiently small, so that if THE TINIEST BIT”
| . LENGTHENING THE NIGHT,
h Pl _ ' PUSHING BACK THE DAWN
AL, - A¢p = —, ‘ —— GIVING ME A LIME
2 MORE. TIME HERE.

WITH YoV
xked

then A¢ = 2m.  Something is wrong!



= Note: Cc g;rmutatlon Relatlonldoes notm'\p\v \the form of\ =
—— ’Uncertaf’t]y PrmC|p\e~~~ ,;*:z_ —  ——

Recall that the uncertainty relation for any two operators A and B is
usually written in the form:

(A4)*(AB)* = (Yli[A, B]ly)?,

A very important notion that is not usually mentioned in quantum
mechanics textbooks is the domain of definition of an operator. Like
functions, an operator has domain.



e ——

-Ti,;“f —— = j: — s —— E; = = =
— ——— ,,fi;i%;‘fi; = U r-icecta | nfyf" rinciple _ —
Definition: An operator A on the Hilbert space H is a linear map
A:D(A) - K,

) — AlY),

where D(A) is a dense subspace of H, called the domain of definition, or simply, domain of A.

(A4)*(AB)* = (pli[A, B]lp),

LHS is defined on [y) € D(A) N D(B), the subspace of H containing all states for which the
uncertainties AA, AB are well-defined [i.e. have physical meaning].

RHS is defined only for states on the subspace D([A4,B]) = D(AB) N D(BA) € D(A) n D(B).

Thus commutation relation does not always allow us to derive
the correct uncertainty principle!

F. Gieres, “Mathematical Surprises and Dirac’s Formalism in Quantum Mechanics”,
Rep.Prog.Phys. 63 (2000) 1893, arXiv:quant-ph/9907069.

— e. Co;rn tatlof—r Rélatlorl deesdnotmplsp \the fe\'m Qj\‘ *
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= —-

—

== Note.f Commutatletr Relatnor’ doesnefjﬁ;;)\v\t\{é’ =

=

*:af;i- — iﬁf.:,;—_fi—’;;f* f Urrcertaimfy Anelple——

Take |¢) € D(A) ND(B), define A=A-(A),B =B - (B),
for simplicity, denote A|Y) = Ay.Then

|i(A‘1h Bl!)) — E(Bi,b} A’PH — |I(Ah‘¢'1'§‘¢') — l(glb:fm')l
Triangle Inequality - = |(A¢: §¢)| + |(§¢:é¢)| — 2|(ﬁ¢, E’ff’)l
> <2|Ay|-|By| =24A-AB

Cauchy-Schwarz Inequality

AL~ AB = - [i(Av, BY) - (B, A)

Both sides are now defined on the same domain
lY) € D(A) ND(B)

Thus the uncertainty principle is determined not by
commutation relation, but by Hermitian sesquilinear form.



In Short:

Uncertainty Principle Depends on Geometry

The uncertainty principle concerns Fourier transforms of functions, which
is nontrivial on curved manifolds.

Alexey Golovnev, Lev Vasil’evich Prokhorov, “Uncer-
tainty Relations in Curved Spaces”, J. Phys. A 37 (2004)
2765, [arXiv:quant-ph/0306080].

Thomas Schiirmann, “Uncertainty Principle on 3-

Dimensional Manifolds of Constant Curvature”, Found.
Phys. 48 (2018) 716, [arXiv:1804.02551 [quant-ph]].

What happens in
de Sitter space?




