Primordial Black Hole Dark Matter and Squeezed Non-Gaussianity

Samuel Passaglia

Based on arXiv:1812.08243 with Wayne Hu, and Hayato Motohashi (YITP)

Kavli Institute for Cosmological Physics at The University of Chicago

• PBHs form in the tail : $\nu\equiv\zeta_C/\sigma\gg1$

• PBHs form in the tail : $\nu \equiv \zeta_C / \sigma \gg 1$

• PBH Mass Fraction $\sim P(\zeta > \zeta_C) \sim \exp\left[-\nu^2/2\right]/\sqrt{2\pi\nu^2}$.

• PBHs form in the tail : $\nu \equiv \zeta_C/\sigma \gg 1$

• PBH Mass Fraction $\sim P(\zeta > \zeta_C) \sim \exp\left[-\nu^2/2\right]/\sqrt{2\pi\nu^2}$.

• PBHs form in the tail : $\nu \equiv \zeta_C/\sigma \gg 1$

- PBH Mass Fraction $\sim P(\zeta > \zeta_C) \sim \exp\left[-\nu^2/2\right]/\sqrt{2\pi\nu^2}$.
- $P_{\rm NG}(\zeta > \zeta_C) \propto \exp\left[-\nu^2/2 + \sum_n (-1)^n \xi^{(n)}(0) \times \nu^n/n!\right]$

see Franciolini++18

•
$$P_{\zeta}(k_S, x) =$$

 $P_{\zeta}(k_S) \left[1 + \frac{d \ln P_{\zeta}(k_S)}{d\zeta_L} \zeta_L(x) \right]$

•
$$P_{\zeta}(k_S, x) =$$

 $P_{\zeta}(k_S) \left[1 + \frac{d \ln P_{\zeta}(k_S)}{d\zeta_L} \zeta_L(x) \right]$

•
$$P_{\zeta}(k_S, x) =$$

 $P_{\zeta}(k_S) \left[1 + \frac{d \ln P_{\zeta}(k_S)}{d\zeta_L} \zeta_L(x) \right]$

•
$$P_{\zeta}(k_S, x) =$$

 $P_{\zeta}(k_S) \left[1 + \frac{d \ln P_{\zeta}(k_S)}{d\zeta_L} \zeta_L(x) \right]$

•
$$P_{\zeta}(k_S, x) =$$

 $P_{\zeta}(k_S) \left[1 + \frac{d \ln P_{\zeta}(k_S)}{d\zeta_L} \zeta_L(x) \right]$

•
$$\langle \zeta_L(x) P_{\zeta}(k_S, x) \rangle_{\zeta_L} \simeq$$

 $\int \frac{d^3 k_L}{(2\pi)^3} B_{\zeta}(k_L, k_S, k_S),$

•
$$P_{\zeta}(k_S, x) =$$

 $P_{\zeta}(k_S) \left[1 + \frac{d \ln P_{\zeta}(k_S)}{d\zeta_L} \zeta_L(x) \right]$

•
$$\langle \zeta_L(x) P_{\zeta}(k_S, x) \rangle_{\zeta_L} \simeq$$

 $\int \frac{d^3 k_L}{(2\pi)^3} B_{\zeta}(k_L, k_S, k_S),$

•
$$\frac{d\ln P_{\zeta}(k_S)}{d\zeta_L} \simeq \frac{B_{\zeta}(k_L, k_S, k_S)}{P_{\zeta}(k_S)P_{\zeta}(k_L)} \simeq \frac{12}{5} f_{\rm NL}(k_L, k_S, k_S).$$

•
$$P_{\zeta}(k_S, x) =$$

 $P_{\zeta}(k_S) \left[1 + \frac{d \ln P_{\zeta}(k_S)}{d\zeta_L} \zeta_L(x) \right]$

•
$$\langle \zeta_L(x) P_{\zeta}(k_S, x) \rangle_{\zeta_L} \simeq$$

 $\int \frac{d^3k_L}{(2\pi)^3} B_{\zeta}(k_L, k_S, k_S),$

•
$$\frac{d\ln P_{\zeta}(k_S)}{d\zeta_L} \simeq \frac{B_{\zeta}(k_L, k_S, k_S)}{P_{\zeta}(k_S)P_{\zeta}(k_L)} \simeq \frac{12}{5} f_{\rm NL}(k_L, k_S, k_S).$$

$$\Delta P_{\zeta}/P_{\zeta} = 12/5f_{\rm NL} \times \zeta_L$$

•
$$P_{\zeta}(k_S, x) =$$

 $P_{\zeta}(k_S) \left[1 + \frac{d \ln P_{\zeta}(k_S)}{d\zeta_L} \zeta_L(x) \right]$

•
$$\langle \zeta_L(x) P_{\zeta}(k_S, x) \rangle_{\zeta_L} \simeq$$

 $\int \frac{d^3 k_L}{(2\pi)^3} B_{\zeta}(k_L, k_S, k_S),$

•
$$\frac{d\ln P_{\zeta}(k_S)}{d\zeta_L} \simeq \frac{B_{\zeta}(k_L, k_S, k_S)}{P_{\zeta}(k_S)P_{\zeta}(k_L)} \simeq \frac{\frac{12}{5}f_{\rm NL}(k_L, k_S, k_S)}{f_{\rm NL}(k_L, k_S, k_S)}.$$

$$\Delta P_{\zeta}/P_{\zeta} = 12/5f_{\rm NL} \times \zeta_L$$

• Squeezed Consistency Relation (Maldacena03): Long mode **shifts the clock** of short modes $f_{\rm NL} \propto {\rm Tilt}$ of Power Spectrum \Rightarrow Shift Mass Scale of PBHs

- Squeezed Consistency Relation (Maldacena03): Long mode **shifts the clock** of short modes $f_{\rm NL} \propto {\rm Tilt}$ of Power Spectrum \Rightarrow Shift Mass Scale of PBHs
- This f_{NL} encodes the coordinate transformation between global and local coordinates. A freely falling observer sees (Pajer++13):

$$\lim_{k_L/k_S \to 0} B_{\bar{\zeta}}(k_L, k_S, k_S) = P_{\zeta}(k_L) P_{\zeta}(k_S) \frac{d \ln \Delta_{\zeta}^2(k_S)}{d \ln k_S} + B_{\zeta}(k_L, k_S, k_S) = 0$$

- Squeezed Consistency Relation (Maldacena03): Long mode **shifts the clock** of short modes $f_{\rm NL} \propto {\rm Tilt}$ of Power Spectrum \Rightarrow Shift Mass Scale of PBHs
- This f_{NL} encodes the coordinate transformation between global and local coordinates. A freely falling observer sees (Pajer++13):

$$\lim_{k_L/k_S \to 0} B_{\bar{\zeta}}(k_L, k_S, k_S) = P_{\zeta}(k_L) P_{\zeta}(k_S) \frac{d \ln \Delta_{\zeta}^2(k_S)}{d \ln k_S} + B_{\zeta}(k_L, k_S, k_S)$$
$$= 0$$

No Go 2.0

Long-short coupling has no effect on PBH statistics in SR

Visually: Squeezed NG vanishes locally after inflation

 δN formalism (Starobinsky85, Sasaki+Stewart96)

$$\frac{12}{5}f_{\rm NL} = 2\frac{\partial^2 N}{\partial\phi^2} \left/ \left(\frac{\partial N}{\partial\phi}\right)^2\right.$$

• USR $f_{\rm NL} = 5/2$. The local power spectrum is modulated for local observers after inflation.

- USR f_{NL} = 5/2. The local power spectrum is modulated for local observers after inflation.
- $\Delta P_{\zeta}/P_{\zeta} = 12/5 f_{\rm NL} \times \zeta_L \rightarrow$ large enhancement if $\zeta_L \gtrsim 10^{-1}$

 δN formalism (Starobinsky85, Sasaki+Stewart96)

$$\frac{12}{5}f_{\rm NL} = 2\frac{\partial^2 N}{\partial\phi^2} \left/ \left(\frac{\partial N}{\partial\phi}\right)^2\right.$$

• USR $f_{\rm NL} = 5/2$. The local power spectrum is modulated for local observers after inflation.

- $\Delta P_{\zeta}/P_{\zeta} = 12/5 f_{\rm NL} \times \zeta_L \rightarrow$ large enhancement if $\zeta_L \gtrsim 10^{-1}$
- If so scale-invariance $\implies \Delta^2 \gtrsim 10^{-2} \implies$ Many PBHs

 δN formalism (Starobinsky85, Sasaki+Stewart96)

$$\frac{12}{5}f_{\rm NL} = 2\frac{\partial^2 N}{\partial\phi^2} \left/ \left(\frac{\partial N}{\partial\phi}\right)^2\right.$$

• USR $f_{\rm NL} = 5/2$. The local power spectrum is modulated for local observers after inflation.

- $\Delta P_{\zeta}/P_{\zeta} = 12/5 f_{\rm NL} \times \zeta_L \rightarrow$ large enhancement if $\zeta_L \gtrsim 10^{-1}$
- If so scale-invariance $\implies \Delta^2 \gtrsim 10^{-2} \implies$ Many PBHs

If not enough PBHs are produced in Gaussian approximation, then squeezed NG does not change conclusions

In what circumstances is USR NG even large?

In what circumstances is USR NG even large?

• $\epsilon_H \rightarrow 0$ means USR has to end \implies Transition has to occur

- $\epsilon_H \rightarrow 0$ means USR has to end \implies Transition has to occur
- USR NG highly sensitive to how USR ends

- $\epsilon_H \rightarrow 0$ means USR has to end \implies Transition has to occur
- USR NG highly sensitive to how USR ends
- Cai++17: For **instant potential transitions** from flat (USR) to tilted (SR), USR result holds only for **large** transitions

$$h \equiv \sqrt{\frac{\epsilon_V(\phi^-)}{\epsilon_H(\phi^+)}} \gg 1$$

Visually: Only Top Trajectories have large $f_{\rm NL}$

Visually: Only Top Trajectories have large $f_{\rm NL}$

(results actually computed with in-in and δN)

Finite Width Transitions, Large $f_{\rm NL}$ trajectories suppressed

So transitions must be large and fast

Conclusions

In SR this effect is forbidden by the consistency relation

In SR this effect is forbidden by the consistency relation

In USR no qualitative change in PBH abundance DM conclusion

In SR this effect is forbidden by the consistency relation

In USR no qualitative change in PBH abundance DM conclusion

USR non-Gaussianity is actually rarely conserved

In SR this effect is forbidden by the consistency relation

In USR no qualitative change in PBH abundance DM conclusion

USR non-Gaussianity is actually rarely conserved

Thank you!