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I. INTRODUCTION

The origin of the dark matter and the dark energy is one of the most important issues in current high energy
physics and cosmology. From observations, only 5% of the components of the current universe is visible to us. At
di↵erent scales, ranging from the galactic scale to the cosmic microwave background (CMB), there are many observed
phenomena to test for various models of dark matter and dark energy [1]. The cold dark matter model which treats
the dark matter as collisionless particles is successful at CMB and larger scales, but at the galactic scale, some
discrepancies were proposed [2]. Moreover, the particle dark matter remains elusive from the direct detection so far
[3]. One of the alternatives to the cold dark matter is the modified Newtonian dynamics or modified gravity [1, 2],
which focus on the small scale crisis that cold dark matter cannot explain. Although those modified gravity theories
seem to be less successful in producing the universe evolution picture agreed with CMB and large scale structure data,
they can explain multiple features in galaxy rotational curves such as Tully-Fisher relation [4], Renzo’s Rule [5], etc.

Recently, E. Verlinde proposed emergent modified gravity from volume contribution of entanglement entropy in
the de Sitter spacetime [6], which leads to the apparent dark matter. It is also related to the idea that Einstein
gravity can be emergent from the entropy force with area law [7]. Although the Verlinde’s derivation in [6] received
some doubts on the consistency in the literature [8], we find several Verlinde’s key ideas rather inspiring. One is the
possibility that our macroscopic notions of spacetime and gravity emerge from an underlying microscopic description,
encouraged by the recent development of entangled entropy and quantum information. Another one is viewing dark
matter as merely a gravitational response of the normal matter on the spacetime, so as to derive the dark matter
distribution around the galaxy, the Tully-Fisher relation.

In this paper, we propose a new viewpoint beyond Verlinde’s emergent gravity, which can be considered as a (3+1)
dimensional holographic screen embedded into a higher dimensional flat spacetime. We identify the holographic stress
energy tensor as that of the total dark components. We firstly construct a toy model, which provides a constraint
relation between the densities of dark matter, dark energy and baryonic matter, in the case considering the Lambda
cold dark matter (⇤CDM) parameterization. Furthermore, we generalize our toy model to the holographic Friedmann-
Robertson-Walker (FRW) universe in a flat bulk, and propose a new parameterization from the holographic model,
where the e↵ective dark matter and dark energy are emergent, and are identified with the Brown-York stress energy
tensor [9]. We also compare our approach to the Dvali-Gabadadze-Porrati(DGP) brane world model [10].

To produce the galaxy rotational curves, we further sketch a holographic elastic model with a de Sitter boundary
and fix an inconsistency in the Verlinde’s paper proposed in [8]. We recover the Tully-Fisher relation from the first law
of thermodynamics and elasticity of the “de Sitter medium”. The elasticity can also be realized in black fold approach
[11] or holographic models [12]. Notice here that we adopt the novel idea of elasticity of dark matter in the Verlinde’s
paper. Because the elasticity seems to capture the nature that the apparent dark matter is only the response of the
presence of the normal matters. In the end, we also comment on the relation of the current construction in this paper
with di↵erent scenarios such as brane world model and holographic models of the universe.

In section II, we first introduce the toy model, which leads to the relation between dark matter component and
baryonic matter component of the current universe. In section III, we generalize our toy model to the holographic
FRW universe, and compare it with the DGP brane world scenario. In section IV, we reproduce the Tully-Fisher
relation, with the help of holographic elasticity model and Verlinde’s assumptions. We briefly compare and discuss
the connection between our toy model and other scenarios, such as brane world models, holographic gravity, emergent
gravity and summarize our results in Section V.

II. A TOY CONSTRAINT FOR THE LATE TIME DARK UNIVERSE

We consider a 3+1 dimensional time-like hypersurface with intrinsic metric gµ⌫ and extrinsic curvature Kµ⌫ , which
is embedded as the boundary of a 4+1 dimensional flat bulk spacetime with finite volume. After adding the localized
stress energy tensor Tµ⌫ on the hypersurface, we assume that the induced Einstein field equations on the boundary
are modified as

Rµ⌫ � 1

2
Rgµ⌫ � 1

L
(Kµ⌫ �Kgµ⌫) = 

4

Tµ⌫ . (1)

The length scale L is related to the positive cosmological constant ⇤ = 3/L2. The Einstein constant 
4

= 8⇡G/c4,
G is the Newton gravitational constant and c is the speed of light. Equivalently, we can rewrite the above modified
Einstein field equations in (1) as

Rµ⌫ � 1

2
Rgµ⌫ = 

4

Tµ⌫ + 
4

hT iµ⌫ , (2)
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After considering (15) with T = 0, we have the identity

hT i2⇤
d� 1

� hT i⇤µ⌫hT iµ⌫⇤ = � ⇢̃⇤c
2

d� 1
hT i⇤. (22)

Thus, assuming hT iµ⌫ = hT iµ⌫⇤ ⌘ � ⇤
d

gµ⌫ in the constraint equation (14), the pure de Sitter spacetime satisfies the
above identity automatically. Notice here that the Brown-York stress energy tensor plays the role of dark energy and
there is no matter or dark matter yet in the set-up.

C. Adding Matters with ⇤CDM Parameterization

Next we consider to add small amount of normal matters in with uniform and isotropic distribution. We take
the assumption that the evolution of the late universe is governed by the ⇤CDM parameterization, and the dark
components are identified as our toy model in (9). Considering (19)(21), our assumption for the constraint relation
(15) becomes

hT i2
d� 1

� hT iµ⌫hT iµ⌫ = � ⇢̃⇤c
2

d� 1

⇥
T + hT i⇤. (23)

This is the main constraint relation in this section. Since in Einstein field equations (9), Tµ⌫ is the baryonic visible
matter with mass density ⇢B . The stress energy tensors of baryonic matter and radiation are,

Tµ⌫ = Tµ⌫
B + Tµ⌫

R , Tµ⌫
B = (⇢B)u

µu⌫ , Tµ⌫
R = (⇢R)u

µu⌫ + pRh
µ⌫ , (24)

where hµ⌫ = gµ⌫ + uµu⌫ , and u⌫ is the velocity in d dimensions. The dark energy and cold dark matter are all
assumed to be related to the extrinsic curvature, and hT iµ⌫ is the Brown-York stress energy tensor playing the role
of cold dark matter and dark energy, and

hT iµ⌫ = hT iµ⌫⇤ + hT iµ⌫D , hT iµ⌫⇤ = �(⇢⇤c
2)gµ⌫ , hT iµ⌫D = (⇢D)uµu⌫ . (25)

Putting them back into the constraint equation (23),

�d� 2

d� 1
⇢2D +

2

d� 1
⇢⇤⇢D +

d

d� 1
⇢2⇤ =

1

d� 1
⇢̃⇤

h
d⇢⇤ + ⇢D + ⇢B + ⇢R � (d� 1)

pR
c2

i
. (26)

If setting ⇢̃⇤ = ⇢⇤ and with equation (22), we arrive at

⇢2D =
⇢⇤

d� 2

h
⇢D � ⇢B � ⇢R + (d� 1)

pR
c2

i
. (27)

When d = 4, the stress energy tensor of radiation is traceless �⇢Rc
2 + 3pR = 0. If taking ⇢D ' 5⇢B , ⇢⇤ '

⇢c � ⇢D � ⇢B , we can recover the Verlinde’s constraint relation (5) approximately. In detail, we consider that our
university is uniform and isotropic at large scale, and take the FRW metric in 3 + 1 dimensions,

ds2d = gµ⌫dx
µdx⌫ = �c2dt2 + a(t)2


dr2

1� kr2
+ r2d⌦2

�
. (28)

In the spatial flat ⇤CDM model with k = 0, the Friedmann equation is given by

H(t)2

H2
0

= ⌦⇤ +
⌦D

a(t)3
+

⌦B

a(t)3
+

⌦R

a(t)4
. (29)

H0 is the Hubble constant today at t = t0 and

H(a) ⌘ ȧ(t)

a(t)
, H2

0 =
4c

4

3
⇢c, (30)

which gives the critical mass density of the universe as ⇢c =
3
4

H2
0

c4 and ȧ(t) is the derivative with respect to the time

t. If requiring a(t0) = 1, from (29) we have 1 = ⌦⇤ +⌦B +⌦D +⌦R, then dividing both sides of equation (27) by ⇢2c ,
we have

⌦2
D ' 1

2
⌦⇤(⌦D � ⌦B) (31)
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H(t)2

H2
0

' ⌦B

a(t)3
+ ⌦1/2

⇤


H(t)2

H2
0

+
⌦I

a(t)4

�1/2
(63)

H2

H2
0

' ⌦B

a3
+

s
⌦⇤

⇣H2

H2
0

+
⌦I

a4

⌘
(64)

Or equivalently we have

H(t)2

H2
0

=
⌦M

a(t)3
+

⌦⇤

2
+


⌦2

⇤

4
+

⌦⇤⌦M

a(t)3
+

⌦⇤⌦I

a(t)4

�1/2
. (65)

Notice here that by setting ⌦M = ⌦B + ⌦D and ⌦I = 0, we can recover the usual Friedmann equation of DGP
model in (52). Now let us compare it with the late time evolution of ⇤CDM model.

H(t)2

H2
0

=
⌦B

a(t)3
+

⌦D

a(t)3
+ ⌦⇤. (66)

If only setting ⌦M = ⌦B , and equal the right hand sides of (65) and (66) at a(t0) = 1, we arrive at

⌦2
D = ⌦⇤⌦I � ⌦⇤ (⌦D � ⌦B) . (67)

Thus, once taking

⌦I =
3

2
(⌦D � ⌦B) , (68)

we can recover the constraint relation of our toy model in (4). Considering (68) and plugging the ⇤CDM parameter-
ization (66) into the energy density (56) and pressure (57), we have

⇢H ' ⇢c(⌦⇤ + ⌦D), pH ' �⇢c⌦⇤. (69)

It is also consistent with the ansatz in our toy model (25). Again in order to make the presentation more clear, we here
neglected the contribution of radiation ⌦R and spacial curvature ⌦K , which can be easily included in the equations
above. Here ⌦I e↵ectively contributes to the emergent dark matter. More detailed studies of this holographic model
with non-zero ⌦I will appear in our future work.

IV. CONNECTION WITH VERLINDE’S APPARENT DARK MATTER

Inspired by the emergent gravity by Verlinde in [6], we have proposed the induced gravity from higher dimensional
flat spacetime which gives rise to the similar mechanism in the above sections. In this section, we are trying to
reconcile the inconsistency in Verlinde’s emergent gravity pointed out by [8]. We present a consistent derivation of
Tully-Fisher relation in the frame of the elastic model and try to resolve some issues in the original Verlinde’s story.
The elastic property can also be realized in the holographic models, for example, the blackfold approach [11], or
including the e↵ective mass terms in the bulk [12].

Thus, in order to embed Verlinde’s emergent gravity with elasticity into a bulk, we sketch the total action as
Sd+1 + Sd, where

Sd+1 =
1

2d+1

Z
M

dd+1x
p

�g̃ [Rd+1 � 2⇤d+1 + LM] +
1

d+1

Z
@M

ddx
p�gK, (70)

Sd =
1

2d

Z
@M

ddx
p�g (Rd � 2⇤d) +

Z
@M

ddx
p�gLM . (71)

In the bulk the Lagrange density LM represents the e↵ective term which can provide the holographic elasticity. g̃AB

is bulk metric, gµ⌫ is the induced metric on the boundary and K is the trace of the extrinsic curvature. Like in our
toy model, we can set ⇤d+1 = 0 in the bulk, and study the holographic response of elasticity. One may also add ⇤d

in the boundary action Sd, which plays the role of cosmological constant on the boundary theory, or the tension of
the boundary brane.

⌧�1
c ' k2

4⇡Tc
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although the underlying theory is supersymmetric, the correspondence applies robustly to

non-supersymmetric states such as the black holes mentioned above. In this sense, super-

symmetry is not needed for the correspondence.

On the boundary, the essential physical properties of the gauge theory state (such as local

energy density, pressure, temperature, entropy current, etc.) are captured by the boundary

stress tensor, which in turn is induced by the bulk geometry and can be extracted via a

well-defined Brown-York type procedure [34].6 It is important to distinguish the two stress

tensors one might naturally consider. In our framework, the bulk stress tensor appearing

on the RHS of the bulk Einstein’s equation is set to zero, so that the bulk solutions gab

correspond to general vacuum black holes with negative cosmological constant but no other

matter content. On the other hand, the boundary stress tensor T µ⌫ is non-zero; it captures

the matter content of the boundary theory, its conservation determines the dynamics, but it

does not curve the boundary spacetime à la Einstein’s equations since the boundary metric

is non-dynamical and fixed (in our case to the 4-dimensional Minkowski spacetime).

To summarize,7 the boundary fluid is specified by the boundary stress tensor T

µ⌫(xµ),

while the bulk geometry is specified by the bulk metric gab(r, xµ). The bulk dynamics is

determined by Einsteins equations,

Eab ⌘ Rab �
1

2
Rgab + ⇤ gab = 0 , (2.1)

while the boundary dynamics is determined by stress tensor conservation,

rµT
µ⌫ = 0 . (2.2)

In the following, we’ll see that (2.2) actually arises from (2.1); in this sense, bulk gravity

gives rise the boundary fluid dynamics.

6 For example, for asymptotically AdSd+1 spacetimes, the prescription of [34] gives

T

µ⌫ = lim
rc!1

r

d�2
c

16⇡GN


K

µ⌫ �K �

µ⌫ � (d� 1) �µ⌫ � 1

d� 2

✓
R

µ⌫ � 1

2
R �

µ⌫

◆�

where �

µ⌫ is the d-dimensional metric induced on a r = ⇤c cuto↵ surface, Rµ⌫ and R are the corresponding

Ricci tensor and scalar, K

µ⌫ and K are the extrinsic curvature and its trace, and GN is the Newton’s

constant in d+ 1 dimensions. See also [35].
7 We use the following notation for the coordinates: the bulk line element ds

2 = gab dX
a
dX

b depends

on all bulk directions X

a = (r, xµ) which consist of the radial direction r and the ‘boundary’ spacetime

directions xµ = (t, xi). The d+ 1 dimensional bulk action is given by

Sbulk =
1

16⇡GN

Z
d

d+1
X

p
�g (R� 2⇤) .

4

we can expand the stress tensor as

T

µ⌫ = ⇡

4
T

4 (⌘µ⌫ + 4 uµ
u

⌫) + ⇧µ⌫
(1) + ⇧µ⌫

(2) + . . . , (4.2)

where ⇧µ⌫
(1) contains dissipative terms composed of single-derivative expressions such as @µ

u

⌫ ,

the next term ⇧µ⌫
(2) contains the second order dissipative terms, and so on. As mentioned

above, the dynamics is determined by the conservation equations (2.2), which become more

complicated as one includes more terms in T

µ⌫ . For the zeroth-order T µ⌫ given by the perfect

fluid (3.4), this yields mass conservation and Euler equation; when one includes dissipation,

the stress tensor conservation is described by the generalized9 Navier-Stokes equations.

It turns out that (4.2) is a very useful way to package the stress tensor. At each order,

the form of the stress tensor is actually determined by symmetries, leaving just a finite

number of undetermined transport coe�cients. Since we are dealing with a conformal fluid,

the stress tensor has to be Weyl covariant, as well as generally covariant in the boundary

directions. This procedure of using the Weyl-covariant formalism [37] is so robust that we

can equally easily write the form of a more general d-dimensional dissipative stress tensor

for a conformal fluid living on a fixed background with metric �µ⌫ , to second order:

T

µ⌫ = P (�µ⌫ + d u

µ
u

⌫)� 2 ⌘ �µ⌫

+ 2 ⌘
⇥
⌧1 u

� D��
µ⌫ � ⌧✏ (!

µ
� �

�⌫ + !

⌫
� �

�µ)
⇤
+ ⇠C C

µ↵⌫�
u↵ u�

+ ⇠� [�
µ
� �

�⌫ � P

µ⌫

d� 1
�↵� �

↵�] + ⇠! [!
µ
� !

�⌫ +
P

µ⌫

d� 1
!↵� !

↵�] ,

(4.3)

where P is the pressure and we have used various standard quantities built out of the velocity

u

µ and the background metric �µ⌫ ; in particular, �µ⌫ and !µ⌫ are the shear and the vorticity

of the fluid, respectively, P µ⌫ = �

µ⌫ +u

µ
u

⌫ is the spatial projector, D� is the Weyl-covariant

derivative, and Cµ⌫↵� is the Weyl tensor for �µ⌫ . In the above expression, the 0th and 1st

order terms appear on the first line, whereas the 2nd order terms fill the remaining two lines.

4.2 Transport coe�cients from linearized gravity

The shear viscosity ⌘ and the five second-order transport coe�cients, ⌧1, ⌧✏, ⇠C , ⇠�, and

⇠!, are not determined from the symmetries. These transport coe�cients depend on the

microscopic structure of the fluid; they could be in principle measured, or calculated from

first principles. However, both of these approaches are rather di�cult, since the gauge

theory is strongly coupled. Nevertheless, as we will shortly see, the bulk dual in fact deter-

mines these transport coe�cients uniquely. Although this will occur very naturally within

9 There are two generalizations to the form described in conventional (non-relativistic) fluid dynamics

[36]: one arises from including terms beyond first order in boundary derivatives, and another from the fact

that our fluid is relativistic, with pressure comparable to the energy density.

7

construction was subsequently generalized to other contexts, as reviewed in [16]. Since the

solution for the second-order metric is page-long, here we only report the solution to first

order for illustration.

To first order the bulk metric takes the form

ds

2 = �2 uµ dx
µ
dr + r

2 (⌘µ⌫ + [1� f(r/⇡T )] uµ u⌫) dx
µ
dx

⌫

+ 2r


r

⇡T

F (r/⇡T ) �µ⌫ +
1

3
uµu⌫ @�u

� � 1

2
u

�
@� (u⌫uµ)

�
dx

µ
dx

⌫
, (5.1)

where f(r) is defined in (3.1), F (r) is given by

F (r) ⌘
Z 1

r

dx

x

2 + x+ 1

x(x+ 1) (x2 + 1)
=

1

4


ln

✓
(1 + r)2(1 + r

2)

r

4

◆
� 2 arctan(r) + ⇡

�
,

�

µ⌫ = P

µ↵
P

⌫�
@(↵u�) � 1

3 P
µ⌫

@↵u
↵ is the shear, and T (x) and uµ(x) are any slowly-varying

functions which satisfy the conservation equation (2.2) for the zeroth order perfect fluid

stress tensor (3.4). Note that the first line of (5.1) corresponds to the zeroth order solution

(3.3), whereas each of the terms in the second line have exactly one boundary derivative.13

As mentioned previously, this bulk solution is ‘tubewise’ approximated by a planar black

hole. This means that in each tube, defined by a small neighborhood of given x

µ, but fully

extended in the radial direction r, the radial dependence of the metric is approximately that

of a boosted planar black hole at some temperature T and horizon velocity u

µ, with correc-

tions suppressed by the rate of variation, ✏. These parameters vary from one position x

µ to

another in a manner consistent with fluid dynamics. Our choice of coordinates is such that

each tube extends along an ingoing radial null geodesic; see Fig. 3. Apart from technical

advantages, this is conceptually rather pleasing, since it suggests a mapping between the

boundary and the bulk which is natural from causality considerations. Physically, the solu-

tion (5.1) and its higher-order improvements of course describe a dynamically evolving black

hole with infinitely extended but non-uniform event horizon. The causal structure of this

solution is preserved; in fact, dissipation will cause the black hole to approach a stationary

solution (3.3) at late times.

Let us now focus on the most salient feature of this geometry, namely its event horizon.

Assuming the dissipation causes our configuration to settle down to a stationary state at late

times, we can find the event horizon as the unique null hypersurface with the correct late-

time behavior. This can be solved algebraically, order-by-order in ✏, and takes the schematic

form [24]

r+(x) = ⇡ T (x) +
1

⇡ T (x)
(# �µ⌫(x) �

µ⌫(x) + #!µ⌫(x)!
µ⌫(x)) + . . . (5.2)

13 Note that (5.1) does not have any @µT terms appearing explicitly, since by implementing the zeroth

order stress tensor conservation, we have expressed the temperature derivatives in terms of the velocity

derivatives.
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Fig. 3: The causal structure of the spacetimes dual to fluid mechanics illustrating the tube structure.

The dashed line denotes the future event horizon H+
generated by ⇠

A
, while the shaded tube

indicates the region of spacetime over which the solution is well approximated by a tube of

the uniform black brane.

Intriguingly, it turns out that within this derivative expansion, the location of the event

horizon r+(xµ) in the bulk is determined locally by the behavior of the temperature and

velocity at a point xµ (in particular it is insensitive to the metric at later times), rather than

globally as usual in general relativity. This curious locality is in fact allowed by the long

wavelength regime, wherein the horizon position varies su�ciently slowly.

Fig. 4 gives a cartoon of the behaviour (for simplicity just the local temperature) of

the event horizon for some generic fluid configuration. We see that even if at early times

(bottom of the sketch) the horizon is highly non-uniform, its evolution will tend to dissipate

the inhomogeneities. At late times (top part of the sketch), the horizon settles down to a

stationary configuration. Throughout, the evolution proceeds in such a way that the horizon

area grows, as can be verified by explicit calculation. This has an important consequence for

the dual fluid dynamical description. The pull-back of the area form on the horizon provides

a natural entropy current in the dual fluid. Such entropy current then automatically satisfies

the 2nd Law of thermodynamics.

Let us now turn to the induced fluid stress tensor on the boundary. The stress tensor to

first order in boundary derivatives can be easily obtained from the bulk metric (5.1), and

takes the simple form

T

µ⌫ = ⇡

4
T

4 (4 uµ
u

⌫ + ⌘

µ⌫)� 2 ⇡3
T

3
�

µ⌫
. (5.3)

Here the first two (derivative-free) terms describe a perfect fluid with pressure ⇡

4
T

4, and

correspondingly (using thermodynamics) entropy density s = 4 ⇡4
T

3. The shear viscosity ⌘

of this fluid may be read o↵ from the coe�cient of �µ⌫ and is given by ⇡

3
T

3. Notice that

12

conformal fluids in d-dimensional curved spacetime �µ⌫ with the stress tensor (4.3):

P =
1

16⇡GN

✓
4⇡ T

d

◆d

⌘ =
s

4⇡
=

1

16⇡GN

✓
4⇡ T

d

◆d�1

⌧1 =
d

4⇡ T

✓
1�

Z 1

1

dy

y

d�2 � 1

y (yd � 1)

◆

⌧✏ =
d

4⇡ T

Z 1

1

dy

y

d�2 � 1

y (yd � 1)

⇠� = ⇠C =
d

4⇡ T

2 ⌘

⇠! = 0 .

(5.4)

Note that written suggestively in this way, we can discern intriguing relations between the

coe�cients, which hint at the specific nature of any conformal fluid which admits a gravita-

tional dual. For example, the results that ⇠� = ⇠C and ⇠! = 0 are universal but non-trivial

from the fluid standpoint. More intriguingly, we see that14 ⇠� = 2 ⌘ (⌧1 + ⌧✏) for all d.

6 Concluding remarks

The results summarized above have since been extended and generalized in a number of

useful directions. As already indicated, one immediate set of generalizations involved relat-

ing a d-dimensional conformal fluid to asymptotically AdSd+1 black hole (see [49] for the

interesting case of d = 3 and [48, 25] for general d). An intriguing observation of [49] is the

striking di↵erence between the phenomenology of non-relativistic turbulent flows in 3+1 and

2+1 dimensions. In the 3+1 dimensional turbulent energy cascade, large scale eddies give

rise to smaller scale eddies, eventually transferring energy down to scales where viscosity

becomes important and energy is dissipated. In contrast, 2+1 dimensional turbulent flows

are characterized by an inverse cascade, in which smaller scale eddies merge into large scale

eddies, creating large long-lived vortical structures. If these qualitative di↵erences extend to

relativistic fluids, they would suggest a profound di↵erence in gravitational dynamics in four

and five dimensions. In particular, we might predict that black holes in AdS4 would take

much longer to equilibrate than AdS5 black holes. From the gravitational standpoint, this

would certainly seem very surprising.

More ambitiously, one may also consider fluids on curved manifolds (rather than just

the Minkowski spacetime Rd�1,1), as has been initiated in [50]. In addition, one can include

matter in the bulk. This allows for richer dynamics, but typically at the expense of losing

14 in fact this relation continues to hold even for charged black holes mentioned in §6 [48, 25].
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xΜ

r

xΜ

r

Fig. 2: Cartoon of ‘tubewise approximation’ of slowly-varying configuration by a corresponding

piecewise-constant one.

of (some component of) the velocity. The slower such variations are, the better can we

approximate the configuration with piecewise-constant tubes. Our task then is to patch

such tubes together to construct a non-uniform and time-evolving black hole.

Of course, if we just replace uµ and T in the metric (3.3) by T (x) and u

µ(x), the resulting

metric (call it g(0)ab ) will no longer solve Einstein’s equations (2.1). However, it is a manifestly

regular metric which approaches a solution in the limit of infinitely slow variations. This

enables us to use the metric g

(0)
ab as a starting point for constructing an iterative solution.

The requirement of slow variations can be written schematically as

@µ log T

T

⇠ O(✏) ,
@µu

T

⇠ O(✏) (4.4)

where ✏ is a small parameter. In terms of the fluid description, it is indeed the same parameter

(4.1) (counting the number of xµ derivatives) which ensured that the configuration is in local

equilibrium and therefore describable as a fluid. Using ✏ as an expansion parameter, we

expand the metric and the fields uµ(x) and T (x) as

gab =
1X

k=0

✏

k
g

(k)
ab , T =

1X

k=0

✏

k
T

(k)
, uµ =

1X

k=0

✏

k
u

(k)
µ . (4.5)

We can then substitute the expansion (4.5) into Einstein’s equations (2.1), and find the

solution order by order in ✏. The term g

(k)
ab corrects the metric at the k

th order, such that

Einstein’s equations will be satisfied to O(✏k) provided the functions T (x) and u

µ(x) obey a

certain set of equations of motion, which turn out to be precisely the stress tensor conserva-

tion equations (2.2) of boundary fluid dynamics at O(✏k�1). Hence the resulting corrected

metric can be constructed systematically to any desired order. Importantly, the expansion

remains valid well inside the event horizon, which allows verification of the regularity of such

a solution.

Let us examine the structure of the equations a bit more explicitly. Einstein’s equations

(2.1) split up into two kinds: Constraint equations, Erµ = 0 which implement stress-tensor
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duality, we therefore conclude that the Petrov type I con-
dition would indeed play an important role in this aspect.
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Thus from the definition of the heat current hQ
i

i, we can read o↵
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which leads to the heat conductivity with momentum relaxation
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In the DC limit ! ! 0, this expression reduces to the formulae in terms of the local s̃c and

T̃c given in (3.37) and (3.38),
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For simplification, we can rewrite `c in (3.50) as the dimensionless form
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3.3 Running of the Cuto↵ surface as Wilson RG flow

In the fluid/gravity correspondence with a cuto↵ surface, [22–25], the running of the cuto↵

surface is interprected as the wilson renormalison group in holography. A recent field theory

discussion can be found in [71]

Two figures will be added here, based on (3.54)

The breaking of translational invariance modifies the conservation equations of relativistic

hydrodynamics into @
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with the acceleration a
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= @
t
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. It is in (2.42) for our Rindler fluid, and in (3.46) for our
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rate up to order k4 are
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We need to define the new energy density and pressure through
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where after using the constraint equation in (3.20), we can see that
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Linearised Hydrodynamics. — For the linearised hydrodynamics, again we consider

the linearised velocity and the temperature field
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the Ward identity for momentum non-conservation equation then up to order O(k4) becomes
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4 Rindler Fluid and Holographic Wilson RG Flow

In the fluid/gravity duality with a finite cuto↵ surface, the running of the cuto↵ surface is interpreted
as the Wilson renormalization group flow [22–25], a recent discussion of the dual field theory can be
found in [71]. However, it has been the first order transport coe�cients, such as the ratio of shear
viscosity and entropy density ⌘/s = 1/4⇡, does not run with the cuto↵ surface. In the following, we
will show that the dimensionless sub-leading correction ⇠

c

, which is defined in (3.57), will run along
with the cuto↵ surface.

The breaking of translational invariance modifies the conservation equations of relativistic hy-
drodynamics into @
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�IhOIi, where the Ward identity for the stress tensor controls how
momentum relaxes to equilibrium through scattering of the scalars. Notice that beyond the leading
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near boundary limit in holography. While at large scale the e↵ects of the lattice can be neglect, which
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order that was studied in [52] with @
a
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i
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c
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, the new holographic Ward identity up to order
k4 suggested in [63] is
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4⇡T̃c

, (4.1)

with the acceleration a
i

= @
t

v
i

. It is in (2.44) for our Rindler fluid, and in (3.48) for our cuto↵ AdS
fluid. For the cuto↵ AdS fluid, the momentum relaxation rate up to order k4 are
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The value of ⇠
c

is given in (3.57), which is one of our main conclusions. In the following we will
take both of the near horizon limit and near boundary limit, and plot the running of relaxation rate
⌧�1
c

(Figure 1) and sub-leading coe�cient ⇠
c

(Figure 2) along with the cuto↵ surface rc .
Near horizon limit. — In order to take the near horizon limit rc ! r0 , and match with the

gauge choose in the Rindler fluid, we can choose the gauge g
(1)
uu

(r0) = 0 in (3.15) and fix �⇣
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We need to make the coordinate transformation
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After identifying
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L2
f 0(r0) = 20 , (4.6)

such that Tc ! T0 , we can recover the Rindler fluid with momentum relaxation. In particular, the
following dimensionless quantity in (2.46) is re-obtained from the near horizon limit,
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Near boundary limit. — The near boundary limit rc ! 1 of the cuto↵ surface in AdS is easier

to reach, since we kept the conformal factor in the metric (3.12). Refer to the procedure in [34], we
can simply set

c
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to recover all results at the AdS boundary. In particular, the dimensionless number
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From which we obtain the solution of v
i

v
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= � 1
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@
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T̃c + · · · , (3.50)

as well as the momentum relaxation rate
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Here the coe�cient `c is given by
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Thus from the definition of the heat current hQ
i

i, we can read o↵
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i

= �̃
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@
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which leads to the heat conductivity with momentum relaxation
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In the DC limit ! ! 0, this expression reduces to the formulae in terms of the local s̃c and T̃c given
in (3.37) and (3.38),
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4 Rindler Fluid and Holographic Wilson RG Flow

In the fluid/gravity duality with a finite cuto↵ surface, the running of the cuto↵ surface is interpreted
as the Wilson renormalization group flow [22–25], a recent discussion of the dual field theory can be
found in [71]. However, it has been the first order transport coe�cients, such as the ratio of shear
viscosity and entropy density ⌘/s = 1/4⇡, does not run with the cuto↵ surface. In the following, we
will show that the dimensionless sub-leading correction ⇠

c

, which is defined in (3.57), will run along
with the cuto↵ surface.
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Notice here that by setting ⌦M = ⌦B + ⌦D and ⌦I = 0, we can recover the usual Friedmann equation of DGP
model in (52). Now let us compare it with the late time evolution of ⇤CDM model.
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It is also consistent with the ansatz in our toy model (25). Again in order to make the presentation more clear, we here
neglected the contribution of radiation ⌦R and spacial curvature ⌦K , which can be easily included in the equations
above. Here ⌦I e↵ectively contributes to the emergent dark matter. More detailed studies of this holographic model
with non-zero ⌦I will appear in our future work.

IV. CONNECTION WITH VERLINDE’S APPARENT DARK MATTER

Inspired by the emergent gravity by Verlinde in [6], we have proposed the induced gravity from higher dimensional
flat spacetime which gives rise to the similar mechanism in the above sections. In this section, we are trying to
reconcile the inconsistency in Verlinde’s emergent gravity pointed out by [8]. We present a consistent derivation of
Tully-Fisher relation in the frame of the elastic model and try to resolve some issues in the original Verlinde’s story.
The elastic property can also be realized in the holographic models, for example, the blackfold approach [11], or
including the e↵ective mass terms in the bulk [12].
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can be expanded in the following form

Tab = T
(0)
ab + T

(1)
ab + T

(2)
ab +O(@3), (16)

and these terms are obtained in [? ] as

T
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ab = hab,

T
(1)
ab = ⇣ 0(uc@cln )uaub � 2⌘Kab,

T
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Here the first and second order transport coe�cients are

⇣ 0 =0, ⌘ = 1,

d1 =� 2, d2 = d3 = d4 = d5 = 0,

c1 =� 2, c2 = c3 = c4 = c5 = �c6 = �4 . (17)

The momentum constraint 2Gµbnµ|⌃c = 0, which leads
to the conservation of the stress tensor @aTab = 0, gives
the constraint equations (??), while the Hamiltonian con-
straint 2Gµ⌫nµn⌫ |⌃c = 0 leads to 4H ⌘ pTabT

ab � T 2 =
0, which can be viewed as the equation of state for the
dual fluid. In addition, one can show that the trace of
the stress tensor satisfies T = p + O(@3). Putting the
stress tensor (??) into the expression (??), we then ob-
tain Pab = O(@3), which of course implies Pij = O(@3).
Thus we have shown again that the Petrov type I con-
dition Pij = 0 is satisfied up to @2 by using the stress
tensor of the dual relativistic fluid.

From Petrov type I condition to dual relativistic fluid.
In this subsection we turn the logic around. Assuming
the Hamiltonian constraint and Petrov type I condition
on a finite cuto↵ surface, we will show that the stress ten-
sor of the dual fluid can be fixed up to the second order of
the derivative expansion, without using the details of the
bulk metric. The resulting stress tensor exactly matches
the one from the solution of vacuum Einstein equations.

Firstly, one can introduce an undetermined symmetric
stress tensor T̂ab, and it satisfies h b

a T̂bcu
c = 0, where ua is

regarded as the relativistic fluid velocity. Then the stress
tensor can be decomposed as T̂ab = uaub +⇧ab, where

⌘ T̂abu
aub, ⇧ab ⌘ hc

ah
d
b T̂cd. (18)

The Hamiltonian constraint becomes H = 0, where

4H ⌘ p ( 2 +⇧ab⇧
ab)� T̂ 2, (19)

and T̂ = � + ⇧abh
ab. The Petrov type I condition can

be generalized as Pab = 0, where
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Expanding the stress tensor in terms of the derivative
expansion parameter @ as

= (0) + (1) + (2) +O(@3),

⇧ab = ⇧(0)
ab +⇧(1)

ab +⇧(2)
ab +O(@3), (21)
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Further one can construct the two null vectors as

p
2`µ = �nµ + uµ,

p
2kµ = �nµ � uµ, (11)

which obey `µkµ = 1 and all other products with m µ
i

vanish. Along with the condition gµ⌫m
µ
i m

⌫
j = �ij up to

order @2, one can obtain the p+ 2 Newman-Penrose-like
vector fields `,k,mi such that

gµ⌫ = `µk⌫ + `⌫kµ + �ijm
i
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In this frame,
p
2` = nr@r leads to the expression
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where P(r)
ab ⌘ nrhc

an
rhd

bCrcrd. With the metric (??), we
find

P(r)
ab =� (nr)2

�1

2
hc
ah

d
b@

2
rg

(2)
cd + 2⌦ac⌦

c
b

�

+O(@3),

(14)

and considering g
(2)
ab in (??), we conclude P(r)

ab = O(@3),

which also indicates P(r)
ij = O(@3). As a result, we have

shown that the solution (??) of vacuum Einstein equa-
tions is Petrov type I at each point up to the second order
@2 in the derivative expansion.

Petrov type I condition on the cuto↵ surface. We can
project the Weyl tensor on the hypersurface ⌃c and define
Pij ⌘ 2C(`)i(`)j |⌃c . In [? ], Pij = 0 is named as Petrov
type I condition and Pij can be rewritten in terms of the
extrinsic curvature Kab of ⌃c by employing the Gauss-
Codazzi equations. Notice that Kab can be expressed
in terms of the Brown-York stress tensor through Tab =
2(K�ab �Kab). We have Pij = m a

i m
b
j Pab where

4Pab =hm
a hn

b

⇥

(TmcTnd � TmnTcd)u
cud � TmcT

c
n

� 4uc@cTmn + 4uc@(mTn)c

⇤

+ p�2
⇥

T (T + p Tcdu
cud) + 4p uc@cT

⇤

hab. (15)

With the bulk metric in (??), the dual stress tensor
can be expanded in the following form

Tab = T
(0)
ab + T

(1)
ab + T

(2)
ab +O(@3), (16)

and these terms are obtained in [? ] as

T
(0)
ab = hab,

T
(1)
ab = ⇣ 0(uc@cln )uaub � 2⌘Kab,

T
(2)
ab = �1

n

⇥

d1KabKab + d2⌦ab⌦
ab + d3(u
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+ d4u
c@c(u

d@dln ) + d5h
cd(@cln )(@dln )

⇤

uaub

+
⇥

c1KacKc
b +c2Kc(a⌦

c
b) +c3⌦ac⌦

c
b +c4h

c
ah

d
b@c@dln
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Here the first and second order transport coe�cients are

⇣ 0 =0, ⌘ = 1,

d1 =� 2, d2 = d3 = d4 = d5 = 0,

c1 =� 2, c2 = c3 = c4 = c5 = �c6 = �4 . (17)

The momentum constraint 2Gµbnµ|⌃c = 0, which leads
to the conservation of the stress tensor @aTab = 0, gives
the constraint equations (??), while the Hamiltonian con-
straint 2Gµ⌫nµn⌫ |⌃c = 0 leads to 4H ⌘ pTabT

ab � T 2 =
0, which can be viewed as the equation of state for the
dual fluid. In addition, one can show that the trace of
the stress tensor satisfies T = p + O(@3). Putting the
stress tensor (??) into the expression (??), we then ob-
tain Pab = O(@3), which of course implies Pij = O(@3).
Thus we have shown again that the Petrov type I con-
dition Pij = 0 is satisfied up to @2 by using the stress
tensor of the dual relativistic fluid.

From Petrov type I condition to dual relativistic fluid.
In this subsection we turn the logic around. Assuming
the Hamiltonian constraint and Petrov type I condition
on a finite cuto↵ surface, we will show that the stress ten-
sor of the dual fluid can be fixed up to the second order of
the derivative expansion, without using the details of the
bulk metric. The resulting stress tensor exactly matches
the one from the solution of vacuum Einstein equations.

Firstly, one can introduce an undetermined symmetric
stress tensor T̂ab, and it satisfies h b

a T̂bcu
c = 0, where ua is

regarded as the relativistic fluid velocity. Then the stress
tensor can be decomposed as T̂ab = uaub +⇧ab, where

⌘ T̂abu
aub, ⇧ab ⌘ hc

ah
d
b T̂cd. (18)

The Hamiltonian constraint becomes H = 0, where

4H ⌘ p ( 2 +⇧ab⇧
ab)� T̂ 2, (19)

and T̂ = � + ⇧abh
ab. The Petrov type I condition can

be generalized as Pab = 0, where

4Pab⌘� ⇧ab �⇧ac⇧
c
b �4hc

ah
d
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e@e⇧cd)�4⇧ c
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d
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� 4 Kab + p�2
⇥

T̂ (T̂ + p ) + 4p uc@cT̂
⇤
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Expanding the stress tensor in terms of the derivative
expansion parameter @ as

= (0) + (1) + (2) +O(@3),

⇧ab = ⇧(0)
ab +⇧(1)

ab +⇧(2)
ab +O(@3), (21)
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On a timelike hypersurface ⌃c at r = rc with a flat
induced metric �abdxadxb = �rcd⌧2 + dxidxi, one can
define the p+1 velocity ua = �v(1, vi), where �v is fixed
through �abu

aub = �1. Introducing the other parameter
P and regarding vi and P as slowly varying functions
of xa = (⌧, xi), one can consider the perturbations of
the metric (1) in non-relativistic hydrodynamic limit [11,
16] that vi ⇠ @i ⇠ ✏, P ⇠ @⌧ ⇠ ✏2. The solution of
vacuum Einstein equations to an arbitrary order of ✏ can
be constructed through keeping the induced metric flat
and demanding the regularity on the horizon [19].

In order to check whether the solution to higher orders
in [19] is Petrov type I or not, we consider a frame by
adding higher order corrections to the zeroth order frame
(2) as

p
2 ` =@0 � n0 + `(✏) + `(✏2) +O(✏3),

p
2k =� @0 � n0 + k(✏) + k(✏2) +O(✏3),

m1 =m0
1 +m1(✏) +m1(✏2) +O(✏3),

mi0 =@i0 +mi0(✏) +mi0(✏2) +O(✏3), (3)

where i0, j0 = 2, ..., p, and the two zeroth order nor-
malized spatial vectors are n0 = (sin ✓)n � (cos ✓)m1,
m0

1 = (cos ✓)n+(sin ✓)m1. As there exists the rotational
symmetry among the mi vectors, this choice does not
lose any generality. Putting them and the Wely tensors
of the spacetime with higher order corrections [19] into
C(`)i(`)j , we find that up to ✏2,

4C(`)1(`)1 = r�1(sin ✓ � 1)2@1v1,

4C(`)1(`)i0 =
⇥

r�1(sin ✓ � 1)2 � 3r�1
c (sin2 ✓ � 1)

⇤

@[1vi0],

4C(`)i0(`)j0 = r�1(sin ✓ � 1)2@(i0vj0). (4)

If demanding C(`)i(`)j vanishes at this order, sin ✓ = 1 is
the only consistent solution, which just gives the frame
at the zeroth order (2). Taking into account of this, the
relevant possible choice of the first order corrections in (3)
is `⌧(✏) = 0, `i(✏) = �`

p
rvi, m ⌧

i(✏) = �mvi, where �m and
�` are arbitrary functions of r and rc. On the other hand,
the orthogonal normalization condition of the vectors up
to the first order of ✏ gives constraints that m j

i(✏) = 0 and

m ⌧
i(✏) � vi/rc = �ij`

i
(✏). Putting them together we find

that the non-vanishing terms in C(`)i(`)j first appear at
order ✏4,

4C(`)i(`)j =�` r
�1
c r

⇥

6�`v
k!k(ivj) + 2v(i@

2vj) � 4vk@(i!j)k

⇤

+ r�1
c r @2@(ivj) +O(✏5). (5)

As all these terms in (5) are independent and only one
free parameter �` is left, it is impossible to make C(`)i(`)j

in (5) vanish at ✏4 for any choice of �`. We may need to
consider the possible higher order corrections to the ve-
locity and pressure like vi ! vi+ �vi(✏3), P ! P + �P(✏4),
but these corrections can be absorbed into the arbitrary
functions F (✏3)

i and F (✏4)
⌧ in the metric [19], which do not

make any contribution to C(`)i(`)j up to ✏4.

Notice that by setting �` = �r�1 and taking r ! rc,
one can recover the results in [32] that Petrov type I
condition is broken at ✏4, unless some additional physical
conditions, such as the irrotational condition, are added.
In particular, if setting �` = 0 in (5), only the term
@2@(ivj) with three derivatives is left. This seemingly
implies that the Petrov type I condition will be violated
at the third order @3 of the derivative expansion. As no
explicit solution of vacuum Einstein equations is available
up to @3 in the literature, therefore we are here not able
to show whether the Petrov type I condition holds at the
third order and even arbitrary higher orders, although it
is certainly of great interest to see this. In the following
section, we will only consider the Petrov type I condition
of the solution of vacuum Einstein equations up to the
second order in the derivative expansion.
Petrov type I spacetime in the relativistic hydrodynamic

expansion. — Introduce the parameter = (rc�rh)�1/2,
which will turn out to be the pressure of the dual fluid,
and rh is the location of the Rindler horizon of the equi-
librium solution. Then keeping the induced metric flat
and demanding the regularity on the horizon, regarding
ua and as two slowly varying functions of xa, one can
obtain the solution of vacuum Einstein equations to an
arbitrary order by using the derivative expansion. Up to
the second order, the solution can be written as [20]

ds2 =gµ⌫dx
µdx⌫ = �2 uadx

adr + gabdx
adxb,

where gab = g
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ab + g
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ab + g
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ab ,

g
(0)
ab =� 2(r � rc)uaub + �ab,

g
(1)
ab =2 (r � rc)

�

uc@cln uaub + 2a(aub)

�

,

g
(2)
ab =2(r � rc)

h

(KcdKcd)uaub � 2u(ah
c
b)@dKd

c

�K c
a Kcb + 2Kc(a⌦

c
b) � 2hc

ah
d
bu

e@eKcd

i

+ 2(r � rc)
2
n

�1

2
KcdKcd + aca

c
�

uaub

+ 2u(ah
c
b)

⇥

@dKd
c � (Kcd + ⌦cd)a

d
⇤

� ⌦ac⌦
c
b

o

+ 4(r � rc)
3
�1

2
⌦cd⌦

cd
�

uaub.

Here the transverse projector ha
b = �a

b + uaub, tensors
Kab = hc

ah
d
b@(cud), ⌦ab = hc

ah
d
b@[cud], acceleration aa =

ub@bu
a. And the constraint equations are

@au
a =2 �1KabKab +O(@3),

aa + hb
a@bln =2 �1hc

a@bKb
c +O(@3). (6)

Notice that ha
b can also be decomposed as m a

i m
i
b, where

m a
i =� a

i + r�1/2
c ui�

a
⌧ + (1 + r1/2c �v)

�1uiu
j�aj , (7)

a, b, ... and i, j, ... indices are raised (lowered) by �ab and
�ij , respectively. Denote n being the spacelike unit nor-
mal of constant r hypersurface, u being the normal-
ized p + 2 velocity, and mi being the remaining or-
thonormal spatial vectors. One then has gµ⌫ = nµn⌫ �

3

uµu⌫ + �ijm µ
i m ⌫

j , where n = nr@r + na@a, u = ua@a,
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Further one can construct the two null vectors as

p
2`µ = �nµ + uµ,

p
2kµ = �nµ � uµ, (9)

which obey `µkµ = 1 and all other products with m µ
i

vanish. Along with the condition gµ⌫m
µ
i m

⌫
j = �ij up to

order @2, one can obtain the p+ 2 Newman-Penrose-like
vector fields `,k,mi such that

gµ⌫ = `µk⌫ + `⌫kµ + �ijm
i
µm

j
⌫ . (10)

In this frame,
p
2` = nr@r leads to the expression

P(r)
ij ⌘ 2C(`)i(`)j = m a
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b
j P

(r)
ab , (11)

where P(r)
ab ⌘ nrhc

an
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bCrcrd. With the metric (??), we
find
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and considering g
(2)
ab in (??), we conclude P(r)

ab = O(@3),

which also indicates P(r)
ij = O(@3). As a result, we have

shown that the solution (??) of vacuum Einstein equa-
tions is Petrov type I at each point up to the second order
@2 in the derivative expansion.

Petrov type I condition on the cuto↵ surface. We can
project the Weyl tensor on the hypersurface ⌃c and define
Pij ⌘ 2C(`)i(`)j |⌃c . In [23], Pij = 0 is named as Petrov
type I condition and Pij can be rewritten in terms of the
extrinsic curvature Kab of ⌃c by employing the Gauss-
Codazzi equations. Notice that Kab can be expressed
in terms of the Brown-York stress tensor through Tab =
2(K�ab �Kab). We have Pij = m a

i m
b
j Pab where

4Pab =hm
a hn

b

⇥

(TmcTnd � TmnTcd)u
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c
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� 4uc@cTmn + 4uc@(mTn)c

⇤

+ p�2
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T (T + p Tcdu
cud) + 4p uc@cT

⇤

hab. (13)

With the bulk metric in (??), the dual stress tensor
can be expanded in the following form

Tab = T
(0)
ab + T

(1)
ab + T

(2)
ab +O(@3), (14)

and these terms are obtained in [20] as

T
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ab = hab,

T
(1)
ab = ⇣ 0(uc@cln )uaub � 2⌘Kab,
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Here the first and second order transport coe�cients are

⇣ 0 =0, ⌘ = 1,

d1 =� 2, d2 = d3 = d4 = d5 = 0,

c1 =� 2, c2 = c3 = c4 = c5 = �c6 = �4 . (15)

The momentum constraint 2Gµbnµ|⌃c = 0, which leads
to the conservation of the stress tensor @aTab = 0, gives
the constraint equations (6), while the Hamiltonian con-
straint 2Gµ⌫nµn⌫ |⌃c = 0 leads to 4H ⌘ pTabT

ab � T 2 =
0, which can be viewed as the equation of state for the
dual fluid. In addition, one can show that the trace of
the stress tensor satisfies T = p + O(@3). Putting the
stress tensor (14) into the expression (13), we then obtain
Pab = O(@3), which of course implies Pij = O(@3). Thus
we have shown again that the Petrov type I condition
Pij = 0 is satisfied up to @2 by using the stress tensor of
the dual relativistic fluid.

From Petrov type I condition to dual relativistic fluid.
In this subsection we turn the logic around. Assuming
the Hamiltonian constraint and Petrov type I condition
on a finite cuto↵ surface, we will show that the stress ten-
sor of the dual fluid can be fixed up to the second order of
the derivative expansion, without using the details of the
bulk metric. The resulting stress tensor exactly matches
the one from the solution of vacuum Einstein equations.

Firstly, one can introduce an undetermined symmetric
stress tensor T̂ab, and it satisfies h b

a T̂bcu
c = 0, where ua is

regarded as the relativistic fluid velocity. Then the stress
tensor can be decomposed as T̂ab = uaub +⇧ab, where

⌘ T̂abu
aub, ⇧ab ⌘ hc

ah
d
b T̂cd. (16)

The Hamiltonian constraint becomes H = 0, where

4H ⌘ p ( 2 +⇧ab⇧
ab)� T̂ 2, (17)

and T̂ = � + ⇧abh
ab. The Petrov type I condition can

be generalized as Pab = 0, where

4Pab⌘� ⇧ab �⇧ac⇧
c
b �4hc

ah
d
b(u

e@e⇧cd)�4⇧ c
(a h

d
b)@duc

� 4 Kab + p�2
⇥

T̂ (T̂ + p ) + 4p uc@cT̂
⇤

hab. (18)

Expanding the stress tensor in terms of the derivative
expansion parameter @ as

= (0) + (1) + (2) +O(@3),

⇧ab = ⇧(0)
ab +⇧(1)

ab +⇧(2)
ab +O(@3), (19)
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On a timelike hypersurface ⌃c at r = rc with a flat
induced metric �abdxadxb = �rcd⌧2 + dxidxi, one can
define the p+1 velocity ua = �v(1, vi), where �v is fixed
through �abu

aub = �1. Introducing the other parameter
P and regarding vi and P as slowly varying functions
of xa = (⌧, xi), one can consider the perturbations of
the metric (1) in non-relativistic hydrodynamic limit [11,
16] that vi ⇠ @i ⇠ ✏, P ⇠ @⌧ ⇠ ✏2. The solution of
vacuum Einstein equations to an arbitrary order of ✏ can
be constructed through keeping the induced metric flat
and demanding the regularity on the horizon [19].

In order to check whether the solution to higher orders
in [19] is Petrov type I or not, we consider a frame by
adding higher order corrections to the zeroth order frame
(2) as

p
2 ` =@0 � n0 + `(✏) + `(✏2) +O(✏3),

p
2k =� @0 � n0 + k(✏) + k(✏2) +O(✏3),

m1 =m0
1 +m1(✏) +m1(✏2) +O(✏3),

mi0 =@i0 +mi0(✏) +mi0(✏2) +O(✏3), (3)

where i0, j0 = 2, ..., p, and the two zeroth order nor-
malized spatial vectors are n0 = (sin ✓)n � (cos ✓)m1,
m0

1 = (cos ✓)n+(sin ✓)m1. As there exists the rotational
symmetry among the mi vectors, this choice does not
lose any generality. Putting them and the Wely tensors
of the spacetime with higher order corrections [19] into
C(`)i(`)j , we find that up to ✏2,

4C(`)1(`)1 = r�1(sin ✓ � 1)2@1v1,

4C(`)1(`)i0 =
⇥

r�1(sin ✓ � 1)2 � 3r�1
c (sin2 ✓ � 1)

⇤

@[1vi0],

4C(`)i0(`)j0 = r�1(sin ✓ � 1)2@(i0vj0). (4)

If demanding C(`)i(`)j vanishes at this order, sin ✓ = 1 is
the only consistent solution, which just gives the frame
at the zeroth order (2). Taking into account of this, the
relevant possible choice of the first order corrections in (3)
is `⌧(✏) = 0, `i(✏) = �`

p
rvi, m ⌧

i(✏) = �mvi, where �m and
�` are arbitrary functions of r and rc. On the other hand,
the orthogonal normalization condition of the vectors up
to the first order of ✏ gives constraints that m j

i(✏) = 0 and

m ⌧
i(✏) � vi/rc = �ij`

i
(✏). Putting them together we find

that the non-vanishing terms in C(`)i(`)j first appear at
order ✏4,

4C(`)i(`)j =�` r
�1
c r

⇥

6�`v
k!k(ivj) + 2v(i@

2vj) � 4vk@(i!j)k

⇤

+ r�1
c r @2@(ivj) +O(✏5). (5)

As all these terms in (5) are independent and only one
free parameter �` is left, it is impossible to make C(`)i(`)j

in (5) vanish at ✏4 for any choice of �`. We may need to
consider the possible higher order corrections to the ve-
locity and pressure like vi ! vi+ �vi(✏3), P ! P + �P(✏4),
but these corrections can be absorbed into the arbitrary
functions F (✏3)

i and F (✏4)
⌧ in the metric [19], which do not

make any contribution to C(`)i(`)j up to ✏4.

Notice that by setting �` = �r�1 and taking r ! rc,
one can recover the results in [32] that Petrov type I
condition is broken at ✏4, unless some additional physical
conditions, such as the irrotational condition, are added.
In particular, if setting �` = 0 in (5), only the term
@2@(ivj) with three derivatives is left. This seemingly
implies that the Petrov type I condition will be violated
at the third order @3 of the derivative expansion. As no
explicit solution of vacuum Einstein equations is available
up to @3 in the literature, therefore we are here not able
to show whether the Petrov type I condition holds at the
third order and even arbitrary higher orders, although it
is certainly of great interest to see this. In the following
section, we will only consider the Petrov type I condition
of the solution of vacuum Einstein equations up to the
second order in the derivative expansion.
Petrov type I spacetime in the relativistic hydrodynamic

expansion. — Introduce the parameter = (rc�rh)�1/2,
which will turn out to be the pressure of the dual fluid,
and rh is the location of the Rindler horizon of the equi-
librium solution. Then keeping the induced metric flat
and demanding the regularity on the horizon, regarding
ua and as two slowly varying functions of xa, one can
obtain the solution of vacuum Einstein equations to an
arbitrary order by using the derivative expansion. Up to
the second order, the solution can be written as [20]

ds2 =gµ⌫dx
µdx⌫ = �2 uadx

adr + gabdx
adxb,

where gab = g
(0)
ab + g

(1)
ab + g

(2)
ab ,

g
(0)
ab =� 2(r � rc)uaub + �ab,

g
(1)
ab =2 (r � rc)

�

uc@cln uaub + 2a(aub)

�

,

g
(2)
ab =2(r � rc)

h

(KcdKcd)uaub � 2u(ah
c
b)@dKd

c

�K c
a Kcb + 2Kc(a⌦

c
b) � 2hc

ah
d
bu

e@eKcd

i

+ 2(r � rc)
2
n

�1

2
KcdKcd + aca

c
�

uaub

+ 2u(ah
c
b)

⇥

@dKd
c � (Kcd + ⌦cd)a

d
⇤

� ⌦ac⌦
c
b

o

+ 4(r � rc)
3
�1

2
⌦cd⌦

cd
�

uaub.

Here the transverse projector ha
b = �a

b + uaub, tensors
Kab = hc

ah
d
b@(cud), ⌦ab = hc

ah
d
b@[cud], acceleration aa =

ub@bu
a. And the constraint equations are

@au
a =2 �1KabKab +O(@3),

aa + hb
a@bln =2 �1hc

a@bKb
c +O(@3). (6)

Notice that ha
b can also be decomposed as m a

i m
i
b, where

m a
i =� a

i + r�1/2
c ui�

a
⌧ + (1 + r1/2c �v)

�1uiu
j�aj , (7)

a, b, ... and i, j, ... indices are raised (lowered) by �ab and
�ij , respectively. Denote n being the spacelike unit nor-
mal of constant r hypersurface, u being the normal-
ized p + 2 velocity, and mi being the remaining or-
thonormal spatial vectors. One then has gµ⌫ = nµn⌫ �

Constraint Equations
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� 4↵(3Jab � J�ab)

=� 4↵
h
� 1

3
p(p� 1)(p� 2)⇡3uaub + (p� 1)(p� 2)


�%+

p� 3

3
⇡

�
⇡2hab

+ (p� 2) [2%� (p� 3)⇡] ⇡⇡(1)
ab

i

=� 4↵̃
h
� 1

3
p⇡3uaub +

⇣
�(%+ ⇡)⇡2 +

p

3
⇡3
⌘
hab +

1

p� 1
[2%� (p� 3)⇡] ⇡⇡(1)

ab

i

=
h
� 2

3
↵̃⇡2(�2p⇡)uaub +

✓
�2(%+ ⇡)(�2↵̃⇡2) +

2

3
↵̃⇡2(�2p⇡)

◆
hab �

4↵̃

p� 1
[2%� (p� 3)⇡] ⇡⇡(1)

ab

i

(47)

Kab =%uaub + #hab + ⇡(1)
ab

P1 =�Mab +M(u)a(u)b + 2N(u)ab + 2p�1⇤hab

=� ⇡ac⇡
c
b + (⇡ � 2%)⇡ab + 2(%+ ⇡)�ab + 2p�1⇤hab

P(0)
1 =� ⇡2hab + (p⇡ � 2%0)⇡hab + 2p�1⇤hab

P(1)
1 = [(p� 2)⇡0 � 2%0] ⇡

(1)
ab + 2(%0 + ⇡0)�ab

=
⇥
(p� 1)⇡2 � 2%⇡

⇤
hab (48)

T̃ab = Ẽuaub + P̃hab � 2⌘̃(rc)�
(✏2)
ab

Ẽ = �2p#̃c

✓
1� 2

3
↵̃#̃2

c

◆
,

P̃ = �Ẽ � 2(%̃c + #̃c)
⇣
1� 2↵̃#̃2

c

⌘

⌘̃(rc) = ⌘(rc)

✓
1 +

2↵̃

p� 1

⇥
2%⇡ � (p� 3)⇡2

⇤◆

⌘̃(rc)
rc!rh= 1� p+ 1

p� 1

2↵̃

L2
+O(↵̃2) +O(�̃2)

↵̃ = (p� 1)(p� 2)↵ (49)

T (0)
ab = Euaub + Phab

Pab=0
=) T (1)

ab = �2⌘�ab + . . .
Pab=0
=) T (2)

ab = . . .

(50)
Pab ⌘ nrhc

an
rhd

bCrcrd (51)
(52)
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Rindler-Fluid AdS Cutoff-Fluid AdS-CFT Fluid

Up to 2nd order 
How about Higher orders? 

[Cai, Yang, Zhang 1401.7792]

Up to to 0th order
Modified Condition?

[1306.5633]

Up to to 0th order
AdS/Rindler correspondence?
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3

uµu⌫ + �ijm µ
i m ⌫

j , where n = nr@r + na@a, u = ua@a,
mi = m a

i @a, and

nr = �1
h

1 + (r � rc) ( � 2uc@cln )

+
�

� g
(2)
cd + g(1)ac g

(1)
bd hab

�

ucud
i1/2

,

na =( nr)�1
⇥

ua + 2 (r � rc)a
a + g

(2)
bc ubhca

⇤

,

ua =na, m a
i = m a

i � 1

2
m b

i g
(2)
bc hca. (8)

Further one can construct the two null vectors as

p
2`µ = �nµ + uµ,

p
2kµ = �nµ � uµ, (9)

which obey `µkµ = 1 and all other products with m µ
i

vanish. Along with the condition gµ⌫m
µ
i m

⌫
j = �ij up to

order @2, one can obtain the p+ 2 Newman-Penrose-like
vector fields `,k,mi such that

gµ⌫ = `µk⌫ + `⌫kµ + �ijm
i
µm

j
⌫ . (10)

In this frame,
p
2` = nr@r leads to the expression

P(r)
ij ⌘ 2C(`)i(`)j = m a

i m
b
j P

(r)
ab , (11)

where P(r)
ab ⌘ nrhc

an
rhd

bCrcrd. With the metric (??), we
find

P(r)
ab =� (nr)2

�1

2
hc
ah

d
b@

2
rg

(2)
cd + 2⌦ac⌦

c
b

�

+O(@3),

(12)

and considering g
(2)
ab in (??), we conclude P(r)

ab = O(@3),

which also indicates P(r)
ij = O(@3). As a result, we have

shown that the solution (??) of vacuum Einstein equa-
tions is Petrov type I at each point up to the second order
@2 in the derivative expansion.

Petrov type I condition on the cuto↵ surface. We can
project the Weyl tensor on the hypersurface ⌃c and define
Pij ⌘ 2C(`)i(`)j |⌃c . In [23], Pij = 0 is named as Petrov
type I condition and Pij can be rewritten in terms of the
extrinsic curvature Kab of ⌃c by employing the Gauss-
Codazzi equations. Notice that Kab can be expressed
in terms of the Brown-York stress tensor through Tab =
2(K�ab �Kab). We have Pij = m a

i m
b
j Pab where

4Pab =hm
a hn

b

⇥

(TmcTnd � TmnTcd)u
cud � TmcT

c
n

� 4uc@cTmn + 4uc@(mTn)c

⇤

+ p�2
⇥

T (T + p Tcdu
cud) + 4p uc@cT

⇤

hab. (13)

With the bulk metric in (??), the dual stress tensor
can be expanded in the following form

Tab = T
(0)
ab + T

(1)
ab + T

(2)
ab +O(@3), (14)

and these terms are obtained in [20] as

T
(0)
ab = hab,

T
(1)
ab = ⇣ 0(uc@cln )uaub � 2⌘Kab,

T
(2)
ab = �1

n

⇥

d1KabKab + d2⌦ab⌦
ab + d3(u

c@cln )2

+ d4u
c@c(u

d@dln ) + d5h
cd(@cln )(@dln )

⇤

uaub

+
⇥

c1KacKc
b +c2Kc(a⌦

c
b) +c3⌦ac⌦

c
b +c4h

c
ah

d
b@c@dln

+ c5Kab(u
c@cln ) + c6(h

c
a@cln )(hd

b@dln )
⇤

o

.

Here the first and second order transport coe�cients are

⇣ 0 =0, ⌘ = 1,

d1 =� 2, d2 = d3 = d4 = d5 = 0,

c1 =� 2, c2 = c3 = c4 = c5 = �c6 = �4 . (15)

The momentum constraint 2Gµbnµ|⌃c = 0, which leads
to the conservation of the stress tensor @aTab = 0, gives
the constraint equations (6), while the Hamiltonian con-
straint 2Gµ⌫nµn⌫ |⌃c = 0 leads to 4H ⌘ pTabT

ab � T 2 =
0, which can be viewed as the equation of state for the
dual fluid. In addition, one can show that the trace of
the stress tensor satisfies T = p + O(@3). Putting the
stress tensor (14) into the expression (13), we then obtain
Pab = O(@3), which of course implies Pij = O(@3). Thus
we have shown again that the Petrov type I condition
Pij = 0 is satisfied up to @2 by using the stress tensor of
the dual relativistic fluid.

From Petrov type I condition to dual relativistic fluid.
In this subsection we turn the logic around. Assuming
the Hamiltonian constraint and Petrov type I condition
on a finite cuto↵ surface, we will show that the stress ten-
sor of the dual fluid can be fixed up to the second order of
the derivative expansion, without using the details of the
bulk metric. The resulting stress tensor exactly matches
the one from the solution of vacuum Einstein equations.

Firstly, one can introduce an undetermined symmetric
stress tensor T̂ab, and it satisfies h b

a T̂bcu
c = 0, where ua is

regarded as the relativistic fluid velocity. Then the stress
tensor can be decomposed as T̂ab = uaub +⇧ab, where

⌘ T̂abu
aub, ⇧ab ⌘ hc

ah
d
b T̂cd. (16)

The Hamiltonian constraint becomes H = 0, where

4H ⌘ p ( 2 +⇧ab⇧
ab)� T̂ 2, (17)

and T̂ = � + ⇧abh
ab. The Petrov type I condition can

be generalized as Pab = 0, where

4Pab⌘� ⇧ab �⇧ac⇧
c
b �4hc

ah
d
b(u

e@e⇧cd)�4⇧ c
(a h

d
b)@duc

� 4 Kab + p�2
⇥

T̂ (T̂ + p ) + 4p uc@cT̂
⇤

hab. (18)

Expanding the stress tensor in terms of the derivative
expansion parameter @ as

= (0) + (1) + (2) +O(@3),

⇧ab = ⇧(0)
ab +⇧(1)

ab +⇧(2)
ab +O(@3), (19)

Yun-Long Zhang  Holographic Dark Fluid
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Tab = �2(Kab �K�ab)

ds

2 = �rd⌧

2 +
1

r

dr

2 + dxidx
i

ds

2 = �rcd⌧
2 + dxidx

i

2Gµbn
µ|rc = 2@a(Kab � �abK) = 0 ) @aTab = 0

2Gµ⌫n
µn⌫ |rc = (K2 �KabK

ab) = 0 ) T 2 � pTabT
ab = 0

!14

@iv
i = 0 @iP + @⌧vi + vj@jvi � ⌘@2vi = 0
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Let’s using some parameters from ⇤CDM [3], with a bit priori choice as following

⌦
⇤

= 0.685, ⌦D = 0.265, ⌦B = 0.050. (5)

Compare our formula with Verlinde’s, we have

�V ⌘ ⌦2

D � 4

3
⌦B ' 0.36% , (6)

�CSZ ⌘ ⌦2

D � 1

2
⌦

⇤

(⌦D � ⌦B) ' �0.34% . (7)

Although our relation hold as well as Verlinde’s, they are still some subtile derivation in approximation.

MOND limit

on-going...

II. INDUCED ⇤CDM UNIVERSE

Similar to the formula in (1), let’s write down the Einstein equation in d dimension as

Rµ⌫ � 1

2
Rgµ⌫ = d(Tµ⌫ + Tµ⌫), (8)

with µ, ⌫ = 0, 1, ..., (d�1), and d = 8⇡Gd/c4. The Tµ⌫ is the stress tensor of normal matters, and Tµ⌫ is the e↵ective
dark sectors of our universe, which can include the dark energy and dark matters. The trace lead to the Ricci scalar

R = � 2d

d� 2
(T + T ) . (9)

Now consider one higher dimension embedding of a hyper-surface into the d dimensional spacetime. with the normal
vector NM= 1

L (X0

, Xi) which is defined towards the direction of coordinates. From which we can define the induce
metric on the hypersurface gMN = ⌘MN �NMNN as well as the extrinsic curvature

Kµ⌫ ⌘ g M
µ g N

⌫ r
(MNN)

, (10)

with µ, ⌫ the index on the hypersurface, which depends on the coordinate choices.

The Hamiltonian constraint equation

K2 �Kµ⌫Kµ⌫ = R+ 2G(d+1)

MN NMNN , (11)

with M,N = 0, 1, ..., d. If we define the following Brown-York stress tensor,

Tµ⌫ = � 1

d+1

(Kgµ⌫ �Kµ⌫) , (12)

with d+1

the Einstein’s constant in d + 1 dimension. Notice that in the above defination, there is a minuse sign
compare with the usual brown-York formula, which means the opsite side of the normal vector N Then (11) gives

T 2

d� 1
� Tµ⌫T µ⌫ =

R+ 2G(d+1)

MN NMNN

(d+1

)2
. (13)

De Sitter Spacetime.— Without the normal matters Tµ⌫=0, and Tµ⌫ = T̄µ⌫ ⌘ � ⇤

d
gµ⌫ . The cosmological

constant ⇤ = (d�1)(d�2)

2L2 as the dark energy. It can be embedded into d+ 1 dimensional flat spacetime

ds2d+1

= ⌘MNdXMdXN = �dX2

0

+ dX2

i , (14)

with i = 1, 2, ..., d. It is a hyperbolid spacetime with radius L and the normal vector are

L2 = �T 2 +X2

i , NM =
1

L
(X

0

, Xi). (15)
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There’re two points of view, or say in duality:

1) In higher dimensional viewpoint, there’s only baryonic matters on the brane, and the dark energy and dark
matter are only relevant to the extrinsic curvature.

Except the constrans equations, we also have the dynamical equation

R(d)
µ⌫ = (Kgµ� �Kµ�)K�

⌫ +Mµ⌫ , (53)

Mµ⌫ ⌘ g M
µ g N

⌫ R(d+1)

MN � g M
µ NP g N

⌫ NQR(d+1)

MPNQ.

R(d) = (K2 �Kµ⌫Kµ⌫) +R� 2R(d+1)

MN NMNN , (54)

R = � 2d

d� 2
(T + T ) . (55)

Although R(d+1)

MN = 0 in flat spacetime, it is not necessary for R(d+1)

MPNQ, which depends on the coordinate choices. In
prinpicle we can also define the induced stress tensor from

Rµ⌫ � 1

2
Rgµ⌫ = T M

µ⌫ + TB
µ⌫ , (56)

T M
µ⌫ ⌘ (Kgµ� �Kµ�)K�

⌫ +Mµ⌫ � 1

2

�
K2 �K⇢�K⇢�

�
gµ⌫ ,

Mµ⌫ ⌘ g M
µ g N

⌫ R(d+1)

MN � g M
µ NP g N

⌫ NQR(d+1)

MPNQ.

which is more nature to describe the evolution of the hyper surface, and indeed in the De-sitter spacetime, Kµ� = 1

Lgµ⌫
lead to T M

µ⌫ = �⇤gµ⌫ . However, if we consider the perturbations, it is not easy to guarantee the conservation of this

stress tensor @µT M
µ⌫

?

= 0. While instead the Brown-York one ha That’s why we didn’t use this formula in this work.
We have tried the perturbation based on this formula, we didn’t obtained expected constraint of the dark matters.
But it still a candidate for further interesting of study.

2) On the induced metric of the brane, there’re e↵ective contribution from the holographic stress tensor, which
can be identified as the stress tensor of dark energy and dark matter. Let’s start with the Einstein-Hilbert action in
(d+1) dimension,

Sd+1

=
1

2d+1

Z
dd+1x

p
�g̃(Rd+1

) +

Z
ddx

p
�gKd (57)

With g̃MN the metric in d+ 1 dimension. After the variation, we have

�Sd+1

=
h
R(d+1)

MN � 1

2
R(d+1)g̃MN

i
�g̃MN

+ (Kµ⌫ �Kgµ⌫) �g
µ⌫ (58)

In modified entropic gravity, gravitational field equation is

f

✓
Rµ⌫ � 1

2
gµ⌫R

◆
�

✓
rµr⌫f � 1

2
gµ⌫r2f

◆
= 8⇡GTµ⌫ , (59)

(rµf)Gµ⌫ =rµTµ⌫ , (60)

0 =rµTµ⌫ +rµT D
µ⌫ , (61)

To study the gravitational waves in this modified theory, let us first look at the freely propagating degrees of freedom
of the gravitational field. We first set all the matter source to zero Tµ⌫ = 0. We will tend to the production of the
waves later.

fRµ⌫ �rµr⌫f = 8⇡G

✓
Tµ⌫ � 1

2
gµ⌫T

◆
, (62)

Ref: 1106.2476 [Living Rev. ’10]
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I. INTRODUCTION

The origin of the dark matter and the dark energy is one of the most important issues in current high energy
physics and cosmology. From observations, only 5% of the components of the current universe is visible to us. At
di↵erent scales, ranging from the galactic scale to the cosmic microwave background (CMB), there are many observed
phenomena to test for various models of dark matter and dark energy [1]. The cold dark matter model which treats
the dark matter as collisionless particles is successful at CMB and larger scales, but at the galactic scale, some
discrepancies were proposed [2]. Moreover, the particle dark matter remains elusive from the direct detection so far
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matter as merely a gravitational response of the normal matter on the spacetime, so as to derive the dark matter
distribution around the galaxy, the Tully-Fisher relation.

In this paper, we propose a new viewpoint beyond Verlinde’s emergent gravity, which can be considered as a (3+1)
dimensional holographic screen embedded into a higher dimensional flat spacetime. We identify the holographic stress
energy tensor as that of the total dark components. We firstly construct a toy model, which provides a constraint
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To produce the galaxy rotational curves, we further sketch a holographic elastic model with a de Sitter boundary
and fix an inconsistency in the Verlinde’s paper proposed in [8]. We recover the Tully-Fisher relation from the first law
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Tµ⌫ . (1)

The length scale L is related to the positive cosmological constant ⇤ = 3/L2. The Einstein constant 
4

= 8⇡G/c4,
G is the Newton gravitational constant and c is the speed of light. Equivalently, we can rewrite the above modified
Einstein field equations in (1) as

Rµ⌫ � 1

2
Rgµ⌫ = 

4

Tµ⌫ + 
4

hT iµ⌫ , (2)
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hT iµ⌫ ⌘ 1
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L
(Kµ⌫ �Kgµ⌫) . (3)

They are expected to govern the late evolution of our universe. hT iµ⌫ will turn out to be the Brown-York stress energy
tensor [9] induced from higher dimensional space time.We will see L is related to the higher dimensional coupling
constant 

5

through L = 
5

/
4

. At the cosmological scale, we assume that Tµ⌫ only includes the stress energy tensor
of normal matter. While hT iµ⌫ in (3) represents the total dark components in our universe, such as the dark energy
and dark matter.

We are going to consider the parameterization in ⇤CDM model describing the evolution of the late universe, in
which the universe contains a positive cosmological constant ⇤ contribution to the dark energy with component ⌦

⇤

,
cold dark matter density parameter ⌦D, and baryon density parameter ⌦B . They satisfy ⌦D + ⌦B + ⌦

⇤

' 1 in
late universe since the radiation density parameter ⌦B ⇠ 10�4 is very small. Based on the modified Einstein field
equations (1) and constraint from the consistent embedding in higher dimensional flat bulk, we are going to show an
interesting constraint relation between these parameters,

CSZ: ⌦2

D =
1

2
⌦

⇤

(⌦D � ⌦B). (4)

Let us compare with the constraint relation in the Verlinde’s emergent gravity [6],

Verlinde: ⌦2

D =
4

3
⌦B . (5)

We take the parameters from the observation of the ⇤CDM model [13], with a bit priori choice of the parameters as

⌦
⇤

' 0.685, ⌦D ' 0.265, ⌦B ' 0.050. (6)

Comparing our formula (4) with Verlinde’s (5), we obtain

�CSZ ⌘ ⌦2

D � 1

2
⌦

⇤

(⌦D � ⌦B) ' �0.34% , (7)

�V ⌘ ⌦2

D � 4

3
⌦B ' 0.36% . (8)

We can see that our relation holds as well as the Verlinde’s with some di↵erence in approximation. We will show
exactly how to derive this equation (4) in the following.

A. Constraints From Hypersurface Embedding

Similar to the formula (2), let us write down the Einstein equation in d dimensional spacetime as

Rµ⌫ � 1

2
Rgµ⌫ = d [Tµ⌫ + hT iµ⌫ ] , (9)

with µ, ⌫ = 0, 1, ..., (d � 1), and d = 8⇡Gd/c
4. Tµ⌫ is the stress energy tensor of normal matters, and hT iµ⌫ is the

e↵ective dark components of our universe, which can include both of the dark energy and dark matter. The trace of
above equations yields the Ricci scalar

R = � 2d

d� 2
[T + hT i] . (10)

Now we assume that the geometry with metric gµ⌫ can be embedded into one higher dimensional spacetime, as a
hypersurface with the normal vector NA, and the indices A,B = 0, 1, ..., d. We can define the induced metric on the
hypersurface gAB = g̃AB �NANB as well as the extrinsic curvature Kµ⌫ ⌘ g A

µ g B
⌫ r̃

(ANB)

, with µ, ⌫ are the indices

on the hypersurface, which depend on the coordinate choices. r̃ is the covariant derivative associated with the bulk
metric g̃AB . Even though there are matters in the late universe, we require them to be localized on the hypersurface,

such that we still have G(d+1)

AB NANB = T (d+1)

AB NANB = 0 . Thus, considering the Gauss equations, the Hamiltonian
constraint equation of the hypersurface leads to

0 = 2G(d+1)

AB NANB ⌘ K2 �Kµ⌫Kµ⌫ �R. (11)

!15

hTµ⌫i = � ⇤

4
gµ⌫

L =
5

4

[Maeda, Mukohyama, Sasaki, Shiromizu, …, [’99, ’10]

Yun-Long Zhang  Holographic Dark Fluid

https://inspirehep.net/author/profile/Yun.Long.Zhang.1


!16

Holographic Model for the Dark Universe and the Swampland Criterion

Rong-Gen Cai1,2,⇤ Sunly Khimphun3,4,† Bum-Hoon Lee5,‡

Sichun Sun6,§ Gansukh Tumurtushaa7,¶ and Yun-Long Zhang8,9⇤⇤
1CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics,

Chinese Academy of Sciences(CAS), Beijing 100190, China
2School of Physical Sciences,University of Chinese Academy of Sciences, Beijing 100049, China

3Department of Physics, Royal University of Phnom Penh, Phnom Penh, Cambodia
4Department of Physics, Hanyang University, Seoul 133-791, Korea

5Center for Quantum Spacetime(CQUeST), Sogang University, Seoul 121-742, Korea
6Department of Physics, Sapienza University of Rome, Rome I-00185, Italy

7IBS Center for Theoretical Physics of the Universe,
Institute for Basic Science(IBS), Daejeon 34051, Korea

8Yukawa Institute for Theoretical Physics(YITP), Kyoto University, Kyoto 606-8502, Japan and
9Asia Pacific Center for Theoretical Physics, APCTP Headquarters, Pohang 790-784, Korea

(Dated: November 28, 2018)

We study a holographic model of the late time universe which on the hypersurface in a flat bulk
spacetime. Both of the dark energy and the dark matter are assumed to emerge from the holographic
stress-energy tensor. We fit the modified Friedmann equation with the supernova data, the the result
match very well with our theoretical assumptions. Instead of ⌦M = 0.30 in the ⇤CDM model, only
⌦M = 0.04 is required in our model, which could be indentified as the baryonic matter. While the
e↵ects of dark matter could be identified into the holographic stress-energy tensor. We also check
swampland criterion of this holographic model.

I. Introduction

In this article, we consider a more consistent embed-
ding of the FRW metric into one higher dimensional flat
spacetime [6]. We assume that the stress-energy tensor
of the total dark components, including dark matter and
dark energy, is provided by the holographic stress-energy
tensor on the FRW hypersurface. In this work, we firstly
review the consistent embedding of the FRW hypersur-
face in a flat bulk. Then we assume that the holographic
stress tensor play the role as the dark matter and dark
energy in the late time universe. We fit the modified
Friedmann equation with the supernova and BAO data,
which match very well with the theoretical assumptions
of the parameters.

II. FRW Hypersurface in a Flat Bulk

Consider a 4 + 1 dimensional flat bulk M with metric
g̃AB , along with the 3+1 dimensional time like hypersur-
face @M with the induced metric gµ⌫ . The total action
is given by

Stot = S5 + S4, (1)

S5 =
1

25

Z

M

d5x
p

�g̃R+
1

5

Z

@M

d4x
p�gK, (2)

S4 =
1

24

Z

@M

d4x
p�g R+

Z

@M

d4x
p�gLm . (3)

K is the trace of extrinsic curvature of the hypersurface
@M, and Lm is the Lagrange density of the standard
model which is localized on the hypersurface.

In this subsection, we will give a new physical interpre-
tation of the FRW hypersurface in a flat bulk with the

embedding metric (6). From the viewpoint of the cuto↵
holography in the flat spacetime [18, 19], we can drop the
manifold M

�

in the flat bulk, such that the hypersurface
@M at y = 0 plays the role of the holographic boundary
of the manifold M+. the Einstein field equation becomes

1

4
Gµ⌫ = Tm

µ⌫ + hT idµ⌫ , (4)

where the Brown-York stress-energy tensor on @M is

hT idµ⌫ = � 2p�g

�(S5)

�gµ⌫
=

1

5
(Kµ⌫ �Kgµ⌫) . (5)

If choose the Gaussian normal coordinates of the bulk
metric g̃AB , we have

ds25 = g̃ABdx
AdxB = dy2 + g̃µ⌫dx

µdx⌫ . (6)

We assume the hypersurface @M located at y = 0, which
is the shared boundary of the half bulkM+ for the region
y > 0 and the half bulk M

�

for the region y < 0.
We consider that our universe is uniform and isotropic

at large scale, and take the spatially flat FRW metric in
d = 4 dimensions,

ds24 =gµ⌫dx
µdx⌫ = �c2dt2 + a(t)2

⇥
dr2 + r2d⌦2

⇤
. (7)

The consistent embedding in higher dimensional flat
spacetime has been discussed in [7], where the bulk met-
ric (6) in Gaussian normal coordinates is

ds25 = dy2 � n(y, t)2 c2dt2 + a(y, t)2
⇥
dr2 + r2d⌦2

⇤
.
(8)
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In this article, we consider a more consistent embed-
ding of the FRW metric into one higher dimensional flat
spacetime [6]. We assume that the stress-energy tensor
of the total dark components, including dark matter and
dark energy, is provided by the holographic stress-energy
tensor on the FRW hypersurface. In this work, we firstly
review the consistent embedding of the FRW hypersur-
face in a flat bulk. Then we assume that the holographic
stress tensor play the role as the dark matter and dark
energy in the late time universe. We fit the modified
Friedmann equation with the supernova and BAO data,
which match very well with the theoretical assumptions
of the parameters.

II. FRW Hypersurface in a Flat Bulk

Consider a 4 + 1 dimensional flat bulk M with metric
g̃AB , along with the 3+1 dimensional time like hypersur-
face @M with the induced metric gµ⌫ . The total action
is given by
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K is the trace of extrinsic curvature of the hypersurface
@M, and Lm is the Lagrange density of the standard
model which is localized on the hypersurface.

In this subsection, we will give a new physical interpre-
tation of the FRW hypersurface in a flat bulk with the

embedding metric (7). From the viewpoint of the cuto↵
holography in the flat spacetime [18, 19], we can drop the
manifold M

�

in the flat bulk, such that the hypersurface
@M at y = 0 plays the role of the holographic boundary
of the manifold M+. the Einstein field equation becomes

1

4
Gµ⌫ = Tm

µ⌫ + hT idµ⌫ , (4)

where the Brown-York stress-energy tensor on @M is
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1
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(Kµ⌫ �Kgµ⌫) . (5)

Or, equivalently

Rµ⌫ � 1

2
Rgµ⌫ � 4
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(Kµ⌫ �Kgµ⌫) = 4T

m
µ⌫ (6)

If choose the Gaussian normal coordinates of the bulk
metric g̃AB , we have

ds25 = g̃ABdx
AdxB = dy2 + g̃µ⌫dx

µdx⌫ . (7)

We assume the hypersurface @M located at y = 0, which
is the shared boundary of the half bulkM+ for the region
y > 0 and the half bulk M

�

for the region y < 0.
We consider that our universe is uniform and isotropic

at large scale, and take the spatially flat FRW metric in
d = 4 dimensions,

ds24 =gµ⌫dx
µdx⌫ = �c2dt2 + a(t)2

⇥
dr2 + r2d⌦2

⇤
. (8)

The consistent embedding in higher dimensional flat
spacetime has been discussed in [7], where the bulk met-
ric (7) in Gaussian normal coordinates is

ds25 = dy2 � n(y, t)2 c2dt2 + a(y, t)2
⇥
dr2 + r2d⌦2

⇤
.
(9)

2 Emergent Dark Universe on a Hypersurface

We consider a 3 + 1 dimensional time like hypersurface H with the induced metric gµ⌫
and Ricci scalar R, which is embedded into a 4 + 1 dimensional bulk spacetime M
with metric g̃AB and Ricci scalar R. After including the Lagrangian density Lm of the
standard model matter on the hypersurface, we can write down the total action

Stot =

Z

H
d4x

p
�g

⇣ 1

24
R + Lm

⌘
+ S5 , (5)

S5 ⌘
Z

M
d5x

p
�g̃

⇣ 1

25
R
⌘
+

Z

H
d4x

p
�g

1

5
K, (6)

where K is the trace of extrinsic curvature of the hypersurface H. The Einstein field
equations on the hypersurface become [6],

1

4
Gµ⌫ = Tm

µ⌫ + hT idµ⌫ , (7)

where the Brown-York stress-energy tensor [7] on H is given by

hT idµ⌫ ⌘ � 2p�g

�(S5)

�gµ⌫
=

1

5
(Kµ⌫ �Kgµ⌫) . (8)

After setting 5 = L4, we can reach the modified Einstein field equations in (1). Notice
that in the cuto↵ holography on fluid/gravity duality, there is no dynamics of the induced
metric on the hypersurface [19–23]. Although the modified Einstein field equations are
related to the Dvali-Gabadadze-Porrati (DGP) braneworld models [24–26], we will give
a physical interpretation from holographic scenario together with new parameters.

Considering that our universe is uniform and isotropic at large scale, we take the
spatially flat FRW metric in 3 + 1 dimensions,

ds24 =gµ⌫dx
µdx⌫ = �c2dt2 + a(t)2

⇥
dr2 + r2d⌦2

⇤
. (9)

The consistent embedding of this FRW metric in 4 + 1 dimensional flat spacetime has
been studied in [27], where the bulk metric in Gaussian normal coordinates is

ds25 = dy2 � n(y, t)2 c2dt2 + a(y, t)2
⇥
dr2 + r2d⌦2

⇤
. (10)

The consistent embedding functions are solved as [28–30],

a(y, t)2 = a(t)2 + y2
ȧ(t)2

c2
± 2y

r
a(t)2

ȧ(t)2

c2
+

I

L2
, (11)

n(y, t) =
@ta(y, t)

ȧ(t)
. (12)

The integration constant I is dimensionless after putting a scale factor L2 in (11). In
the coordinates of this metric (10), the hypersurface H is located at y = 0, which is the

4

Ref: [arXiv: JHEP 1810 (2018) 009] by Cai, Sun, Zhang

We have introduced the time dependent notations with tilde, which satisify

⌦⇤ = ⌦̃⇤|t=t0 , ⌦D = ⌦̃D|t=t0 , ⌦B = ⌦̃B|t=t0 . (2.8)

Based on the modified Einstein field equations (2.1) and the Hamiltonian constraint from

the consistent embedding in higher dimensional flat bulk, we are going to show an interesting

constraint relation between these parameters,

CSZ: ⌦2
D =

1

2
⌦⇤(⌦D � ⌦B). (2.9)

Let us compare with the constraint relation in the Verlinde’s emergent gravity [7],

Verlinde: ⌦2
D =

4

3
⌦B. (2.10)

In the current universe both of these two relations (2.9) and (2.10) are remarkably well obeyed.

Taking the observation values within the ⇤CDM model [25, 26], with a bit priori choice of

the parameters as

⌦⇤ ' 0.685, ⌦D ' 0.265, ⌦B ' 0.050, (2.11)

we can calculate the following di↵erences,

�CSZ ⌘ ⌦2
D � 1

2
⌦⇤(⌦D � ⌦B) ' �0.003 , (2.12)

�V ⌘ ⌦2
D � 4

3
⌦B ' 0.004 . (2.13)

Thus, our relation (2.9) holds as well as the Verlinde’s (2.10) with minor di↵erence in approx-

imation. We will show how to derive this constraint equation (2.9) in the following sections.

2.1 Hamiltonian Constraint From Hypersurface Embedding

Similar to the formula (2.2), let us write down the Einstein equation in d dimensional space-

time as

Rµ⌫ � 1

2
Rgµ⌫ = d [Tµ⌫ + hT iµ⌫ ] , (2.14)

with µ, ⌫ = 0, 1, ..., (d � 1), and d = 8⇡Gd/c
4. Tµ⌫ is the stress-energy tensor of baryonic

matter and radiation, and hT iµ⌫ is the e↵ective dark components of our universe, which can

include both of the dark energy and dark matter. The trace of above equations yields the

Ricci scalar

R = � 2d
d� 2

[T + hT i] . (2.15)

Now we assume that the geometry with metric gµ⌫ can be embedded into one higher

dimensional spacetime, as a hypersurface with the normal vector NA, and the indices A,B =

– 4 –

Tm
µ⌫ ⌘ � 2p

�g

�(Sm)

�gµ⌫
,
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Figure 1: The 68.3%, 95.4%, and 99.7% confidence contours for various parameter com-
binations. ⌦m, ⌦I , h = H0/(100 km s�1 Mpc�1) and 1D marginalized likelihood for h.
The best fit values are at ⌦m = 0.0299, ⌦I = 0.4382 and h = 0.7349.

where

r(z) = H�1
0 |⌦K |�

1
2 sinh


|⌦K |

1
2

Z z

0

dz0

E(z0)

�
. (24)

Here, H0 = 100h km s�1 Mpc�1 is the Hubble constant, E(z) is the reduced Hubble
parameter and is defined as E(z) ⌘ H(z)/H0, and sinh(x) = sin(x), x, sinh(x) for ⌦K <
0, ⌦K = 0, and ⌦K > 0, respectively.

The observed value of the distance modulus is given as

µobs = m⇤
B �MB + ↵X1 + � C , (25)

where m⇤
B is the observed peak magnitude in the rest-frame of B band, X1 describes

the time stretching of light-curve, and C describes the SN color at maximum brightness.
As we mentioned above, the JLA data includes 740 SNIa; for each SNIa, the observed
values of m⇤

B, X1, and C are given in reference [34]. The �2 function for JLA observation
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parameter and is defined as E(z) ⌘ H(z)/H0, and sinh(x) = sin(x), x, sinh(x) for ⌦K <
0, ⌦K = 0, and ⌦K > 0, respectively.

The observed value of the distance modulus is given as

µobs = m⇤
B �MB + ↵X1 + � C , (25)

where m⇤
B is the observed peak magnitude in the rest-frame of B band, X1 describes

the time stretching of light-curve, and C describes the SN color at maximum brightness.
As we mentioned above, the JLA data includes 740 SNIa; for each SNIa, the observed
values of m⇤

B, X1, and C are given in reference [34]. The �2 function for JLA observation

7

can be written as
�2
SNIa = (µobs � µth)

†Cov�1
SNIa(µobs � µth) , (26)

where CovSNIa is the covariance matrix of the JLA observation.
For theH0 measurement, we use the result of direct measurement of Hubble constant,

given by Riess et al. [36], H0 = 73.24 ± 1.74km s�1Mpc�1, which is derived from a re-
analysis of Cepheid data. However, this measurement is in tension with Planck data [37].
The �2 function for the H0 measurement is

�2
H0

=

✓
h� 0.7324

0.0174

◆2

. (27)

If we compare our model with the LCDM model, �2 cannot make fair comparison, for
them having di↵erent numbers of free parameters, because a model with more parameters
has more tendency to have a lower value of �2. Thus, to make a fair comparison, we
apply the Akaike information criterion (AIC) [38] and Bayesian information criterion
(BIC) [39] to do analysis. The AIC and BIC are defined as AIC ⌘ �2 lnLmax + 2k and
BIC ⌘ �2 lnLmax+k lnN , respectively, where Lmax is the maximum likelihood, k is the
number of parameters, and N is number of data points used in the model-data fit. For
Gaussian errors, one can use �2

min = �2 lnLmax.

Parameters LCDM hEDU

h 0.7330± 0.0180 0.7349± 0.0179
⌦m 0.2969± 0.0352 0.0299± 0.0515
⌦I — 0.4382± 0.1317
↵ 0.1403± 0.0068 0.1409± 0.0068
� 3.1081± 0.0892 3.1144± 0.0896

�2
min 695.063 694.321

�AIC 0 1.258
�BIC 0 5.866

Table 1: Fitting values and uncertainties of the cosmological parameters.

We introduce AIC and BIC statistics for the sake of comparing di↵erent models
due to the di↵erent free parameters. Obviously, a model with a smaller AIC value
means a better model in terms of data fitting, while a smaller BIC value implies that
such a model is economically favorable if further data points are implemented. In our
analysis, we use LCDM as a reference model, for such model is currently the best data-
fitting model among all existing ones; hence, for our analysis, we need to pay more
attention to the relative values of AIC and BIC as �AIC = AIChEDU ��AICLCDM and
�BIC = BICHPU � �BICLCDM, respectively. Therefore, we need to calculate �AIC =
��2

min � 2�k and �BIC = ��2
min ��klnN . It is worth noticing that, in terms of data

fitting, the model with 0 < �AIC < 2 have a substantial support; the models with
4 < �AIC < 7 have considerably less support, and the models with �AIC > 10 have
essentially no support, with respect to the reference model. Concerning the BIC, the
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We study a holographic model of the late time universe which on the hypersurface in a flat bulk

spacetime. Both of the dark energy and the dark matter are assumed to emerge from the holographic

stress-energy tensor. We fit the modified Friedmann equation with the supernova data, the the result

match very well with our theoretical assumptions. Instead of ⌦M = 0.30 in the ⇤CDM model, only

⌦M = 0.04 is required in our model, and the e↵ects of dark matter and dark energy can identified

as the holographic stress-energy tensor. We also check the swampland criterion of this holographic

dark sector model, where the e↵ective scalar potential is derived.

APPENDIX

⇤CDM :
H(z)

H0
=

p
⌦⇤ + (⌦m)(1 + z)3, (1)

sDGP :
H(z)

H0
=

s
⌦`

2
+ ⌦m(1 + z)3 +


⌦2

`

4
+ ⌦`⌦m(1 + z)3

�1/2
, (2)

hFRW :
H(z)

H0
=

s
⌦⇤

2
+ ⌦m(1 + z)3 +


⌦2

⇤

4
+ ⌦⇤⌦m(1 + z)3 + ⌦⇤⌦I(1 + z)4

�1/2
. (3)

LCDM :
H(z)2

H2
0

= ⌦⇤ + ⌦m(1 + z)3 (4)

sDGP :
H(z)2

H2
0

=
⌦⇤

2
+ ⌦m(1 + z)3 +

⌦⇤

2

r
1 +

4⌦m

⌦⇤
(1 + z)3 (5)

hEDU :
H(z)2

H2
0

=
⌦⇤

2
+ ⌦m(1 + z)3 +

⌦⇤

2

r
1 +

4⌦m

⌦⇤
(1 + z)3 +

4⌦I

⌦⇤
(1 + z)4 (6)

sDGP :
H(z)

H0
=

s
⌦⇤

4
+

✓
⌦⇤

4
+ ⌦m(1 + z)3

◆
+


⌦2

⇤

4
+ ⌦⇤⌦m(1 + z)3

�1/2
, (7)

=

r
⌦⇤

4
+

s✓
⌦⇤

4
+ ⌦m(1 + z)3

◆
(8)

hFRW :
H(z)

H0
=

s
⌦⇤

2
+ ⌦m(1 + z)3 +


⌦2

⇤

4
+ ⌦⇤⌦m(1 + z)3 + ⌦⇤⌦I(1 + z)4

�1/2
. (9)
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We study a holographic model of the late time universe which on the hypersurface in a flat bulk
spacetime. Both of the dark energy and the dark matter are assumed to emerge from the holographic
stress-energy tensor. We fit the modified Friedmann equation with the supernova data, the the result
match very well with our theoretical assumptions. Instead of ⌦M = 0.30 in the ⇤CDM model, only
⌦M = 0.04 is required in our model, which could be indentified as the baryonic matter. While the
e↵ects of dark matter could be identified into the holographic stress-energy tensor. We also check
swampland criterion of this holographic model.

I. Introduction

In this article, we consider a more consistent embed-
ding of the FRW metric into one higher dimensional flat
spacetime [6]. We assume that the stress-energy tensor
of the total dark components, including dark matter and
dark energy, is provided by the holographic stress-energy
tensor on the FRW hypersurface. In this work, we firstly
review the consistent embedding of the FRW hypersur-
face in a flat bulk. Then we assume that the holographic
stress tensor play the role as the dark matter and dark
energy in the late time universe. We fit the modified
Friedmann equation with the supernova and BAO data,
which match very well with the theoretical assumptions
of the parameters.

II. FRW Hypersurface in a Flat Bulk

Consider a 4 + 1 dimensional flat bulk M with metric
g̃AB , along with the 3+1 dimensional time like hypersur-
face @M with the induced metric gµ⌫ . The total action
is given by

Stot = S5 + S4, (1)

S5 =
1

25

Z

M

d5x
p

�g̃R+
1

5

Z

@M

d4x
p�gK, (2)

S4 =
1

24

Z

@M

d4x
p�g R+

Z

@M

d4x
p�gLm . (3)

K is the trace of extrinsic curvature of the hypersurface
@M, and Lm is the Lagrange density of the standard
model which is localized on the hypersurface.

In this subsection, we will give a new physical interpre-
tation of the FRW hypersurface in a flat bulk with the

embedding metric (6). From the viewpoint of the cuto↵
holography in the flat spacetime [18, 19], we can drop the
manifold M

�

in the flat bulk, such that the hypersurface
@M at y = 0 plays the role of the holographic boundary
of the manifold M+. the Einstein field equation becomes

1

4
Gµ⌫ = Tm

µ⌫ + hT idµ⌫ , (4)

where the Brown-York stress-energy tensor on @M is

hT idµ⌫ = � 2p�g

�(S5)

�gµ⌫
=

1

5
(Kµ⌫ �Kgµ⌫) . (5)

If choose the Gaussian normal coordinates of the bulk
metric g̃AB , we have

ds25 = g̃ABdx
AdxB = dy2 + g̃µ⌫dx

µdx⌫ . (6)

We assume the hypersurface @M located at y = 0, which
is the shared boundary of the half bulkM+ for the region
y > 0 and the half bulk M

�

for the region y < 0.
We consider that our universe is uniform and isotropic

at large scale, and take the spatially flat FRW metric in
d = 4 dimensions,

ds24 =gµ⌫dx
µdx⌫ = �c2dt2 + a(t)2

⇥
dr2 + r2d⌦2

⇤
. (7)

The consistent embedding in higher dimensional flat
spacetime has been discussed in [7], where the bulk met-
ric (6) in Gaussian normal coordinates is

ds25 = dy2 � n(y, t)2 c2dt2 + a(y, t)2
⇥
dr2 + r2d⌦2

⇤
.
(8)
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H(t)2

H2

0

' ⌦B

a(t)3
+ ⌦1/2

⇤


H(t)2

H2

0

+
⌦I

a(t)4

�
1/2

(63)

H2

H2

0

' ⌦B

a3
+

s
⌦

⇤

⇣H2

H2

0

+
⌦I

a4

⌘
(64)

S
Cuto↵

= S
CFT

� S
AdS

|1rc (65)

(66)

S
Rindler

= S
CFT

� S
AdS

|1r0+✏ (67)

(68)

S
AdS

= S
CFT

(69)

Or equivalently we have

H(t)2

H2

0

=
⌦M

a(t)3
+

⌦
⇤

2
+


⌦2

⇤

4
+

⌦
⇤

⌦M

a(t)3
+

⌦
⇤

⌦I

a(t)4

�
1/2

. (70)

Notice here that by setting ⌦M = ⌦B + ⌦D and ⌦I = 0, we can recover the usual Friedmann equation of DGP
model in (52). Now let us compare it with the late time evolution of ⇤CDM model.

H(t)2

H2

0

=
⌦B

a(t)3
+

⌦D

a(t)3
+ ⌦

⇤

. (71)

If only setting ⌦M = ⌦B , and equal the right hand sides of (68) and (69) at a(t
0

) = 1, we arrive at

⌦2

D = ⌦
⇤

⌦I � ⌦
⇤

(⌦D � ⌦B) . (72)

Thus, once taking

⌦I =
3

2
(⌦D � ⌦B) , (73)

we can recover the constraint relation of our toy model in (4). Considering (71) and plugging the ⇤CDM parameter-
ization (69) into the energy density (56) and pressure (57), we have

⇢H ' ⇢c(⌦⇤

+ ⌦D), pH ' �⇢c⌦⇤

. (74)

It is also consistent with the ansatz in our toy model (25). Again in order to make the presentation more clear, we here
neglected the contribution of radiation ⌦R and spacial curvature ⌦K , which can be easily included in the equations
above. Here ⌦I e↵ectively contributes to the emergent dark matter. More detailed studies of this holographic model
with non-zero ⌦I will appear in our future work.

IV. CONNECTION WITH VERLINDE’S APPARENT DARK MATTER

Inspired by the emergent gravity by Verlinde in [6], we have proposed the induced gravity from higher dimensional
flat spacetime which gives rise to the similar mechanism in the above sections. In this section, we are trying to
reconcile the inconsistency in Verlinde’s emergent gravity pointed out by [8]. We present a consistent derivation of
Tully-Fisher relation in the frame of the elastic model and try to resolve some issues in the original Verlinde’s story.
The elastic property can also be realized in the holographic models, for example, the blackfold approach [11], or
including the e↵ective mass terms in the bulk [12].

Thus, in order to embed Verlinde’s emergent gravity with elasticity into a bulk, we sketch the total action as
Sd+1

+ Sd, where

Sd+1

=
1

2d+1

Z
M

dd+1x
p

�g̃ [Rd+1

� 2⇤d+1

+ LM] +
1

d+1

Z
@M

ddx
p�gK, (75)

wD =
pD
⇢D

The modified Friedmann equation is,

H(t)2 =
4c

4

3
[⇢M (t) + ⇢H(t)] , H2

0 =
4c

4

3
⇢c . (3.31)

And the energy conservation equation remains

⇢̇ı(t) = �3H(t)
⇥
⇢ı(t) + pı(t)/c

2
⇤
, ı = M, H . (3.32)

Again we use the same setting in (2.24), considering that ⇢c =
3
4

H2
0

c4
, we have

⌦⇤ =
⇢⇤
⇢c

=
c2

L2H2
0

, ⇢⇤ =
3

4

1

c2L2
, L =

5
4

. (3.33)

Putting (3.29) into (3.31), the modified Friedmann equation is summarized as

H(t)2

H2
0

=
⌦M

a(t)3
+ ⌦1/2

⇤


H(t)2

H2
0

+
⌦I

a(t)4

�1/2
, ⌦I ⌘ Ic2

H2
0

. (3.34)

Or equivalently,

H(t)2

H2
0

=
⌦⇤

2
+

⌦M

a(t)3
+


⌦2
⇤

4
+

⌦⇤⌦M

a(t)3
+

⌦⇤⌦I

a(t)4

�1/2
. (3.35)

We named this Scenario as the holographic FRW(hFRW) model. Instead of using the ⇤CDM

parameterization in (2.7), we has a di↵erent set of parameters in the hFRW model. Notice

here that by setting ⌦M = ⌦B+⌦D and ⌦I = 0, we can recover the usual Friedmann equation

(3.21) of the sDGP model. While if setting ⌦M = ⌦B and turning the parameter ⌦I , it can

be shown that one is able to recover our toy constraint relation (2.9).

Firstly, we need to match these parameters in hFRW model with that in the constraint

relation (2.34),

⌦̃⇤ = ⌦⇤, ⌦̃D = ⌦H(t)� ⌦⇤, ⌦̃B ⌘ ⌦M

a(t)3
=

H(t)2

H2
0

� ⌦H(t), (3.36)

w̃D = �1� 1

3H(t)

⌦̇H(t)
⌦H(t)� ⌦⇤

, ⌦H(t) ⌘ ⇢H
⇢c

= ⌦1/2
⇤

hH(t)2

H2
0

+
⌦I

a(t)4

i1/2
. (3.37)

In particular, taking the derivative of (3.34) and eliminating ⌦M with (3.34) again will lead

to the identical relation of Ḣ(t), as well as w̃D(t) from (3.37),

Ḣ(t) = �3H(t)2

hq
H(t)2

H2
0

+ ⌦I
a(t)4 �p

⌦⇤

i
� 1

3
⌦I
a(t)4

�H(t)2

H2
0

2
q

H(t)2

H2
0

+ ⌦I
a(t)4 �p

⌦⇤

, (3.38)

w̃D = �
hq

H(t)2

H2
0

+ ⌦I
a(t)4 �p

⌦⇤

i
� 1

3
⌦I
a(t)4

� hqH(t)2

H2
0

+ ⌦I
a(t)4 �p

⌦⇤

i
2
q

H(t)2

H2
0

+ ⌦I
a(t)4 �p

⌦⇤

. (3.39)
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This is the main constraint relation in this section. Since in Einstein field equations (2.14),

Tµ⌫ is the stress-energy tensors of baryonic matter and radiation,

Tµ⌫ = Tµ⌫
B + Tµ⌫

R , Tµ⌫
B = (⇢B)u

µu⌫ , Tµ⌫
R = (⇢R)u

µu⌫ + pRh
µ⌫ , (2.29)

where ⇢B is the mass density baryonic matter, hµ⌫ = gµ⌫ + uµu⌫ and uµ is the velocity in d

dimensions. The dark energy and dark matter are all assumed to be related to the extrinsic

curvature of the hypersurface embedded in the higher dimensional flat bulk. We take the

Brown-York stress-energy tensor hT iµ⌫ , which is playing the role of dark energy and dark

matter,

hT iµ⌫ = hT iµ⌫⇤ + hT iµ⌫D , hT iµ⌫⇤ = �(⇢⇤c
2)gµ⌫ , hT iµ⌫D = (⇢D)u

µu⌫ + pDh
µ⌫ . (2.30)

Putting them back into the constraint equation (2.28), we have

(⇢⇤ + ⇢D)
h
d⇢⇤ � (d� 2)⇢D � 2(d� 1)

pD
c2

i
= ⇢̃⇤

n
d⇢⇤ + ⇢B +

h
⇢D � (d� 1)

pD
c2

i
+

h
⇢R � (d� 1)

pR
c2

io
. (2.31)

If setting ⇢̃⇤ = ⇢⇤ and with equation (2.27), we arrive at

⇢2D =
⇢⇤

d� 2

h
⇢D � ⇢B � ⇢R + (d� 1)

pR
c2

i
� d� 1

d� 2

pD
c2

(2⇢D + ⇢⇤) . (2.32)

When d = 4, the stress-energy tensor of radiation is traceless �⇢Rc
2 +3pR = 0. Keeping

the pressure pD of the dark matter in the constraint relation (2.32) leads to

⇢2D =
⇢⇤

2(1 + 3w̃D)

⇥
⇢D(1� 3w̃D)� ⇢B

⇤
, w̃D ⌘ pD

⇢Dc2
. (2.33)

w̃D denotes the e↵ective state equation of the emergent dark matter, which can be time

dependent in general. Dividing both sides of (2.33) by the squire of the critical energy

density ⇢2c in (2.6), we obtain the generalized constraint relation

⌦̃2
D =

⌦̃⇤

2(1 + 3w̃D)

⇥
⌦̃D(1� 3w̃D)� ⌦̃B

⇤
. (2.34)

The components have been identified as

⌦̃⇤ ⌘ ⇢⇤/⇢c, ⌦̃D ⌘ ⇢D/⇢c, ⌦̃B ⌘ ⇢B/⇢c, (2.35)

which can be time dependent in general case.

We will take the assumption that the evolution of the late time universe is governed by

the ⇤CDM parameterization, and the total dark components are identified as the Brown-

York stress-energy tensor in (2.3). We also assume the emergent dark matter is pressureless

at t = t0 for now and discuss the otherwise later in this paper. Through setting w̃D = 0 in

(2.34), and considering (2.8), we can obtain our main toy constraint in (2.9),

⌦2
D =

1

2
⌦⇤(⌦D � ⌦B). (2.36)
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We have introduced the time dependent notations with tilde, which satisify

⌦⇤ = ⌦̃⇤|t=t0 , ⌦D = ⌦̃D|t=t0 , ⌦B = ⌦̃B|t=t0 . (2.8)

Based on the modified Einstein field equations (2.1) and the Hamiltonian constraint from

the consistent embedding in higher dimensional flat bulk, we are going to show an interesting

constraint relation between these parameters,

CSZ: ⌦2
D =

1

2
⌦⇤(⌦D � ⌦B). (2.9)

Let us compare with the constraint relation in the Verlinde’s emergent gravity [7],

Verlinde: ⌦2
D =

4

3
⌦B. (2.10)

In the current universe both of these two relations (2.9) and (2.10) are remarkably well obeyed.

Taking the observation values within the ⇤CDM model [25, 26], with a bit priori choice of

the parameters as

⌦⇤ ' 0.685, ⌦D ' 0.265, ⌦B ' 0.050, (2.11)

we can calculate the following di↵erences,

�CSZ ⌘ ⌦2
D � 1

2
⌦⇤(⌦D � ⌦B) ' �0.003 , (2.12)

�V ⌘ ⌦2
D � 4

3
⌦B ' 0.004 . (2.13)

Thus, our relation (2.9) holds as well as the Verlinde’s (2.10) with minor di↵erence in approx-

imation. We will show how to derive this constraint equation (2.9) in the following sections.

2.1 Hamiltonian Constraint From Hypersurface Embedding

Similar to the formula (2.2), let us write down the Einstein equation in d dimensional space-

time as

Rµ⌫ � 1

2
Rgµ⌫ = d [Tµ⌫ + hT iµ⌫ ] , (2.14)

with µ, ⌫ = 0, 1, ..., (d � 1), and d = 8⇡Gd/c
4. Tµ⌫ is the stress-energy tensor of baryonic

matter and radiation, and hT iµ⌫ is the e↵ective dark components of our universe, which can

include both of the dark energy and dark matter. The trace of above equations yields the

Ricci scalar

R = � 2d
d� 2

[T + hT i] . (2.15)

Now we assume that the geometry with metric gµ⌫ can be embedded into one higher

dimensional spacetime, as a hypersurface with the normal vector NA, and the indices A,B =

– 4 –
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relative value�BIC = BIChEDU�BIC⇤CDM provides the following situations. The model
with �BIC  2 indicates that the comparison model is consistent with the reference
model. The models with 2  �BIC  6 indicates the positive evidence against the
comparison model, whereas for �BIC � 10 such evidence becomes strong. As the result
shown, according to �AIC = 1.258, our model fits well with the observational data.
However, �BIC = 5.866 indicates that if more data will be used, �AIC between the
two models might be, in some extent, increasing, so only the future data can tell us more
about how well theses models relatively fit the observational data.

An overall presentation of constraints is listed in Table 1 for our model. The table
contains the fitting parameters, including the intrinsic values (↵, �) of JLA, and goodness
of fit statistics (�2

min) for our model. For comparison we additionally provide the results
of the usual LCDMmodel of cosmology. From the Table 1, one can see thatH0 = 73.49±
1.7998 km s�1Mpc�1 is the value closer to that obtained from the local measurement [36].
Significantly, the matter component ⌦m in hEDU model turns out to be very small,
compared with the ⌦m in LCDM. It matches well with our theoretical assumption in
section 2, that only the normal matter is required in the hEDU model. In the next
section, based on these parameters from Table 1, we will recover an e↵ective potential
with the dynamical scalar field.

4 Checking on the Swampland Criteria

We can write the e↵ective field theory of one dynamical scalar field for the late-time
accelerating universe in the following action,

Stot =

Z
d4x

p
�g

h 1

24
R + Lm � 1

2
(@�)2 � V (�)

i
. (28)

The swampland criteria (2) and (3) on an e↵ective field theory which is supposed to be
consistent with a theory of quantum gravity were reviewed in the introduction.

In the hEDU model, the holographic dark fluid in (8) is assumed to be the pure
gravitational e↵ects, which can be considered as the dynamics of an e↵ective vacuum.
So is there an e↵ective potential of the dynamical scalar field in (28), which can recover
the same e↵ects? From the holographic energy density (13) and pressure (14), comparing

with the energy density ⇢� = �̇2

2 + V (�) and pressure p� = �̇2

2 � V (�) of the scalar field
in (28), we can reconstruct the e↵ective potential and the scalar field of the holographic
dark fluid, which satisfies

V [�(t)] =
1

2
[⇢d(t)� pd(t)] , (29)

�̇(t) = �
p
⇢d(t) + pd(t) . (30)

For convenience, we have chosen the negative sign in (30). Taking the parameters from
Table 1, we can numerically plot the �(z) and V (�) in Figure 2, by using the relation
dt
dz =

�1
(1+z)H(z) . From the modified Friedmann equation (17), we have seen that sDGP is
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a special case of hEDU when ⌦I = 0. Thus, in this section, we will choose the sDGP as
a reference model of hEDU, along with the following parameters.

Models ⌦m ⌦I ⌦⇤

sDGP 0.21 0 0.62
hEDU 0.03 0.44 0.65

Table 2: The input parameters of the models in section 4. The relation 1 = ⌦m +p
⌦⇤(1 + ⌦I) in (18) is used to obtain ⌦⇤.

The values in the sDGP model are taken from the reference [40], and those values in
the hEDU model are taken from Table 1.

sDGP

hEDU

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

z

ϕ (z)
MP

sDGP

hEDU

0.0 0.5 1.0 1.5 2.0
0

2

4

6

8

10

12

ϕ /MP

V (ϕ)

H0
2MP

2

Figure 2: Left: The e↵ective scalar field �(z) in terms of the redshift z, which is related
to the swampland criterion 1 in (2); Right: The shape of the e↵ective potential V (�)
in terms of �. The red circle indicates the present value of �(z)|z=0 ' 0.65MP for the
hEDU model, and the arrow indicates the direction for the future. The parameters in
the Friedmann equation (17) are taken from Table. 2.

In the figure of �(z)/MP in terms of the redshift parameter z, the zero of �(z) is
chosen to be at the future infinity that �(z)|z!�1 = 0. It is clear to see that |��| ⇠ |�(1)|
is of order 1 in both models, at the dark energy dominated region from z ' 1 to z ' �1.
Thus, the first swampland conjecture in (2) is satisfied in the present universe for both
models.

Notice that in the region 0 . �
MP

. 1, the e↵ective potentials in Figure 2 can be
fitted well with the polynomial formula,

V (�)

H2
0M

2
P

=
⇤0

H2
0

+
h2

2

�2

M2
P

+
h3

3!

�3

M3
P

+
h4

4!

�4

M4
P

+ · · · . (31)

Where ⇤0 = 3⌦⇤H
2
0/c

2 is the e↵ective cosmological constant at the future infinity [6]
and it can be calculated from ⌦⇤ in Table 2. The linear term h1

�
MP

is dropped because
we have V 0(�)|�!0 = 0. The fitting parameters h2, h3, h4 are listed in Table 3, where
h2 > 0 implies that the e↵ective mass of the scalar field � is positive.
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It is straightforward to plot the numerical result of �1(z) and �2(z) in Figure 4. Thus,
we can see that at the present z = 0, �1(0),�2(0) ⇠ O(1), which is the minimum
value between z = 0 and z = 1. In the future infinity, both of the metric solutions in
the sDGP and hEDU models will approach the de Sitter spacetime. We can see that
�1(z)|z!�1 ! 0 from Figure 4. It is because we only consider the late time universe,
and our e↵ective potential only has the minimum in Figure 2. Thus, the first condition
in the second swampland criterion in (3) is satisfied at present, but in tension with the
model in the future.

sDGP

hEDU

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

z

λ1(z)

sDGP

hEDU

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0
0

1

2

3

4

z

λ2(z)

Figure 4: The parameters �1 ⌘ MP
V 0

V
in (33) and �2 ⌘ M2

P
V 00

V
in (34), which are plotted

in terms of the redshift z. They are related to the swampland criterion 2 in (3).

It is interesting to notice that �2(z) is still non-vanishing at the future infinity
�2(z)|z!�1 ⇠ O(1), which can be tested with the potential in either (31) or (32) . Thus,
we can see that in both of the sDGP and hEDU models, we still have �2(z) � c3 ⇠ O(1).
Or say, near the minimum of the e↵ective potential, we have the condition

M2
P |rirjV | � c3V, c3 ⇠ O(1). (35)

Thus, we can suggest that if the condition (35) can be included in the refined de Sitter
conjecture, then some braneworld models [41] with an asymptotic dS spacetime at the
future infinity might be included. Similarly, one can see for example, an interesting em-
bedding of the generalized models of the Randall-Sundrum [42,43] braneworld scenarios
within string theory has been discussed in [44].

5 Conclusion and Discussion

We study a modified gravity model of the late time accelerating universe, especially the
behavior of the universe evolution including the dark sector. We treat the whole dark
sector as the holographic dark fluid on the FRW hypersurface in a flat bulk [6]. After
using the SNIa and H0 data, we fit a new set of the parameters comparing to the LCDM
model. The matter component ⌦m in Table 1 is very small and ⌦I e↵ectively contributes
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Models h2 h3 h4

sDGP 1.73 �2.42 21.0
hEDU 1.32 2.20 4.20

Table 3: The fitting parameters in the polynomial formula of the potential in (31).

Figure 3: Left: The polynomial fittings with the potential in (31), the fitted parameters
are listed in Table 3. Right: The exponential fittings with the potential in (32), the
fitted parameters are listed in Table 4.

Intriguingly, the potentials can also be fitted quite well with two parameters �+ and
�� in the exponential formula,

V (�)

M2
P

=
⇤0

�+ + ��

⇣
�+e

���
�

MP + ��e
�+

�
MP

⌘
. (32)

The ansatz satisfies V (�)|�!0 = ⇤0M
2
P and V 0(�)|�!0 = 0 automatically, and the fitting

parameters are listed in Table 4. It is reasonable as there are only two free parameters
⌦m and ⌦I in the hEDU model (17), with the relation in (18). It is also interesting to
relate the e↵ective potential to some top down models in [9].

Models ⇤0/H
2
0 �+ ��

sDGP 1.87 2.19 0.29
hEDU 1.96 1.54 0.51

Table 4: The fitting parameters in the exponential formula of the potential in (32).

With the e↵ective potentials, now we can check on the second Swampland Criterion
in (3), or say, the refined de Sitter conjecture. We define the following parameters

�1 ⌘ MP
V 0

V
, V 0 ⌘ dV (�)

d�
=

V̇ (t)

�̇(t)
, (33)

�2 ⌘ M2
P

V 00

V
, V 00 ⌘ d

d�

dV (�)

d�
=

1

�̇(t)

d

dt

h V̇ (t)

�̇(t)

i
. (34)
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only 3% of the component in the current universe is required to be the normal matter in
this hEDU model, instead of the 30% in the LCDM model where the dark matter has to
be included. It matches well with our theoretical assumption that only normal matter
is required on the right-hand side of the modified Einstein field equations in (1).

The emergent dark universe model will be asymptotical de Sitter (dS) in the future
infinity. However, it seems di�cult to construct a meta-stable dS vacuum in string
theory. A group of authors [8–11] proposed the conjecture that the scalar potential in
low energy e↵ective theory satisfies,

Criterion 1 :
|��|
MP

 d0, (2)

Criterion 2 : MP |rV | � c1V or M2
P min[rirjV ]  �c2V, (3)

over a certain range of the scalar fields and the positive constants d0, c1, c2 are of order
one ⇠ O(1), if the theory has an ultraviolet (UV) completion consistent with quantum
gravity. Otherwise, the scalar potential is too flat and the theory lies in the swampland.
These conjectures constrain the possible forms of the e↵ective scalar potentials from
the top-down models, which have been studied in the inflationary era [12], present dark
energy dominated universe [13] and the e↵ective potentials in phenomenology [14]. The
swampland conjectures have been used to discuss the possible de Sitter vacua from the
compactifications of string theories [15], related to the Kachru-Kallosh-Linde-Trivedi
(KKLT) approach [16], see also [17] and [18].

In our dark universe model, the dark sector arises from the holographic stress-energy
tensor, which drives the expanding universe. The same stress-energy tensor can also
be reconstructed from the Lagrange density of a scalar field with an e↵ective potential.
From the Friedman equation with the fitting parameters in our model, we derive the
e↵ective scalar potential numerically, such that the derivative of the potential can also
be calculated. We check the conditions in our model and comment on the swampland
criteria. We find that the Criterion 1 in (2) in the hEDU model. However, near the
bottom of the e↵ective potential of hEDU model, we only have

M2
P |rirjV | � c3V, c3 ⇠ O(1), (4)

instead of Criterion 2 in (3). Especially now this condition (4) can include some
braneworld models which are asymptotic de Sitter in the future infinity and avoid some
complications at the bottom of the potential that rV = 0.

In the following section 2, this dark universe model in a flat bulk is reviewed and
the modified Friedmann equation in the present universe is derived. In section 3, the
parameters in the modified Friedmann equation of hEDU model are fitted with the SNIa
and H0 data. Based on these results, in section 4, the e↵ective potential of a dynamical
scalar field is reconstructed to recover the same evolution equation numerically, then the
parameters in the swampland criteria can be calculated. The conclusion and discussion
are summarised in section 5.

3

2

I. INTRODUCTION

The origin of the dark matter and the dark energy is one of the most important issues in current high energy
physics and cosmology. From observations, only 5% of the components of the current universe is visible to us. At
di↵erent scales, ranging from the galactic scale to the cosmic microwave background (CMB), there are many observed
phenomena to test for various models of dark matter and dark energy [1]. The cold dark matter model which treats
the dark matter as collisionless particles is successful at CMB and larger scales, but at the galactic scale, some
discrepancies were proposed [2]. Moreover, the particle dark matter remains elusive from the direct detection so far
[3]. One of the alternatives to the cold dark matter is the modified Newtonian dynamics or modified gravity [1, 2],
which focus on the small scale crisis that cold dark matter cannot explain. Although those modified gravity theories
seem to be less successful in producing the universe evolution picture agreed with CMB and large scale structure data,
they can explain multiple features in galaxy rotational curves such as Tully-Fisher relation [4], Renzo’s Rule [5], etc.

Recently, E. Verlinde proposed emergent modified gravity from volume contribution of entanglement entropy in
the de Sitter spacetime [6], which leads to the apparent dark matter. It is also related to the idea that Einstein
gravity can be emergent from the entropy force with area law [7]. Although the Verlinde’s derivation in [6] received
some doubts on the consistency in the literature [8], we find several Verlinde’s key ideas rather inspiring. One is the
possibility that our macroscopic notions of spacetime and gravity emerge from an underlying microscopic description,
encouraged by the recent development of entangled entropy and quantum information. Another one is viewing dark
matter as merely a gravitational response of the normal matter on the spacetime, so as to derive the dark matter
distribution around the galaxy, the Tully-Fisher relation.

In this paper, we propose a new viewpoint beyond Verlinde’s emergent gravity, which can be considered as a (3+1)
dimensional holographic screen embedded into a higher dimensional flat spacetime. We identify the holographic stress
energy tensor as that of the total dark components. We firstly construct a toy model, which provides a constraint
relation between the densities of dark matter, dark energy and baryonic matter, in the case considering the Lambda
cold dark matter (⇤CDM) parameterization. Furthermore, we generalize our toy model to the holographic Friedmann-
Robertson-Walker (FRW) universe in a flat bulk, and propose a new parameterization from the holographic model,
where the e↵ective dark matter and dark energy are emergent, and are identified with the Brown-York stress energy
tensor [9]. We also compare our approach to the Dvali-Gabadadze-Porrati(DGP) brane world model [10].

To produce the galaxy rotational curves, we further sketch a holographic elastic model with a de Sitter boundary
and fix an inconsistency in the Verlinde’s paper proposed in [8]. We recover the Tully-Fisher relation from the first law
of thermodynamics and elasticity of the “de Sitter medium”. The elasticity can also be realized in black fold approach
[11] or holographic models [12]. Notice here that we adopt the novel idea of elasticity of dark matter in the Verlinde’s
paper. Because the elasticity seems to capture the nature that the apparent dark matter is only the response of the
presence of the normal matters. In the end, we also comment on the relation of the current construction in this paper
with di↵erent scenarios such as brane world model and holographic models of the universe.

In section II, we first introduce the toy model, which leads to the relation between dark matter component and
baryonic matter component of the current universe. In section III, we generalize our toy model to the holographic
FRW universe, and compare it with the DGP brane world scenario. In section IV, we reproduce the Tully-Fisher
relation, with the help of holographic elasticity model and Verlinde’s assumptions. We briefly compare and discuss
the connection between our toy model and other scenarios, such as brane world models, holographic gravity, emergent
gravity and summarize our results in Section V.

II. A TOY CONSTRAINT FOR THE LATE TIME DARK UNIVERSE

We consider a 3+1 dimensional time-like hypersurface with intrinsic metric gµ⌫ and extrinsic curvature Kµ⌫ , which
is embedded as the boundary of a 4+1 dimensional flat bulk spacetime with finite volume. After adding the localized
stress energy tensor Tµ⌫ on the hypersurface, we assume that the induced Einstein field equations on the boundary
are modified as

Rµ⌫ � 1

2
Rgµ⌫ � 1

L
(Kµ⌫ �Kgµ⌫) = 

4

Tµ⌫ . (1)

The length scale L is related to the positive cosmological constant ⇤ = 3/L2. The Einstein constant 
4

= 8⇡G/c4,
G is the Newton gravitational constant and c is the speed of light. Equivalently, we can rewrite the above modified
Einstein field equations in (1) as

Rµ⌫ � 1

2
Rgµ⌫ = 

4

Tµ⌫ + 
4

hT iµ⌫ , (2)

only 3% of the component in the current universe is required to be the normal matter in
this hEDU model, instead of the 30% in the LCDM model where the dark matter has to
be included. It matches well with our theoretical assumption that only normal matter
is required on the right-hand side of the modified Einstein field equations in (1).

The emergent dark universe model will be asymptotical de Sitter (dS) in the future
infinity. However, it seems di�cult to construct a meta-stable dS vacuum in string
theory. A group of authors [8–11] proposed the conjecture that the scalar potential in
low energy e↵ective theory satisfies,

Criterion 1 :
|��|
MP

 d0, (2)

Criterion 2 : MP |rV | � c1V or M2
P min[rirjV ]  �c2V, (3)

over a certain range of the scalar fields and the positive constants d0, c1, c2 are of order
one ⇠ O(1), if the theory has an ultraviolet (UV) completion consistent with quantum
gravity. Otherwise, the scalar potential is too flat and the theory lies in the swampland.
These conjectures constrain the possible forms of the e↵ective scalar potentials from
the top-down models, which have been studied in the inflationary era [12], present dark
energy dominated universe [13] and the e↵ective potentials in phenomenology [14]. The
swampland conjectures have been used to discuss the possible de Sitter vacua from the
compactifications of string theories [15], related to the Kachru-Kallosh-Linde-Trivedi
(KKLT) approach [16], see also [17] and [18].

In our dark universe model, the dark sector arises from the holographic stress-energy
tensor, which drives the expanding universe. The same stress-energy tensor can also
be reconstructed from the Lagrange density of a scalar field with an e↵ective potential.
From the Friedman equation with the fitting parameters in our model, we derive the
e↵ective scalar potential numerically, such that the derivative of the potential can also
be calculated. We check the conditions in our model and comment on the swampland
criteria. We find that the Criterion 1 in (2) in the hEDU model. However, near the
bottom of the e↵ective potential of hEDU model, we only have

M2
P |rirjV | � c3V, c3 ⇠ O(1), (4)

instead of Criterion 2 in (3). Especially now this condition (4) can include some
braneworld models which are asymptotic de Sitter in the future infinity and avoid some
complications at the bottom of the potential that rV = 0.

In the following section 2, this dark universe model in a flat bulk is reviewed and
the modified Friedmann equation in the present universe is derived. In section 3, the
parameters in the modified Friedmann equation of hEDU model are fitted with the SNIa
and H0 data. Based on these results, in section 4, the e↵ective potential of a dynamical
scalar field is reconstructed to recover the same evolution equation numerically, then the
parameters in the swampland criteria can be calculated. The conclusion and discussion
are summarised in section 5.
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been studied in [6]. With the bulk metric (11), the energy
density and pressure in hT idµ⌫ are calculated to be

⇢d(t) = ⇢c
p
⌦⇤

s
H(t)2

H2
0

+
⌦I

a(t)4
, (14)

pd(t) = � ⇢̇d
3H(t)

� ⇢d , (15)

where the critical density and other parameters are given
by

⇢c =
3H2

0M
2
P

~c , ⌦⇤ =
c2

L2H2
0

, ⌦I ⌘ Ic2

L2H2
0

. (16)

The e↵ective cosmological constant in the future infinity
turns out to be ⇤ = 3

L2 [6]. The modified Friedmann
equation becomes

H(t)2 =
4c

4

3
[⇢m(t) + ⇢d(t)] . (17)

Plugging (14) into (17) and considering the relation be-
tween the redshift z and the scale factor via a(t)/a(t0) =
1/(1+z), we arrive at the normalized Hubble parameters
H(z)/H0 in terms of the redshift z, which is the modified
Friedmann equation in the hEDU

H(z)2

H2
0

=
⌦⇤

2

r
1 +

4

⌦⇤

h
⌦m(1 + z)3 + ⌦I(1 + z)4

i

+
⌦⇤

2
+ ⌦m(1 + z)3. (18)

Taking (18) at z = 0 with H0 ⌘ H(z)|z=0, we have the
relation between di↵erent components

1 = ⌦m +
p

⌦⇤(1 + ⌦I) ) ⌦⇤ =
(1� ⌦m)2

(1 + ⌦I)
. (19)

Notice here that by setting ⌦I = 0, we can recover the
usual Friedmann equation of the self-accelerating branch
of the DGP braneworld model (sDGP). When ⌦I ⌧ 1,
the behavior of this term is more like the dark radiation
[33]. In this holographic model of the emergent dark
universe (hEDU), ⌦I turns out not to be so small, such
that the whole dark sector, including the dark energy and
apparent dark matter, is expected to be included in the
holographic dark fluid [6].

Fitting Parameters with the SNIa and H0

data. — In this section, we put constraints on model
parameters using the modified Friedmann equation (18)
and the observational data. We also compare our re-
sult with that of the LCDM model, which is currently
the best data-fitting model among all existing ones. The
Friedmann equation in the LCDM model is given as

LCDM :
H(z)2

H2
0

= ⌦⇤ + ⌦m(1 + z)3, ⌦⇤ = 1� ⌦m.

(20)

We employ the Markov-chain Monte Carlo (MCMC)
sampling analysis together with the observational data.
In particular, in our numerical analysis, we use Type
Ia supernovae (SNIa) data and the direct measurement
of Hubble constant H0, see Appendix A for details of
data and the statistical methods used in this work. We
plot one-dimensional probability distribution and two-
dimensional observational contours in Fig. 1 and the
best-fit values are listed in Table I in comparison to
LCDM. From the Table I, one can see that H0 = 73.49±
1.7998 km s�1Mpc�1 is the value closer to that obtained
from the local measurement [36]. To compare with the
⌦m = 0.2969 in LCDM model, the matter component
⌦m = 0.0299 in hEDU model turns out to be surpris-
ingly small. However, it matches well with our theoretical
assumption in section that only the normal matter is re-
quired in the hEDU model. Moreover, the �AIC = 1.258
value implies that our model fits well with the observa-
tional data. However, the �BIC = 5.866 value indicates
that, if more data will be used, �AIC between the two
models might be, in some extent, increasing, so only the
future data can tell us more about how well these models
relatively fit the data. In the following section, based on
parameters in Table I, we will recover an e↵ective poten-
tial with the dynamical scalar field.

FIG. 1. The 68.3%, 95.4%, and 99.7% confidence con-
tours for various parameter combinations. ⌦m, ⌦I , h =
H0/(100 km s�1 Mpc�1) and 1D marginalized likelihood for
h. The best fit values are at ⌦m = 0.0299, ⌦I = 0.4382 and
h = 0.7349.

Checking on the Swampland Criteria. — We
can write the e↵ective field theory of one dynamical scalar
field for the late-time accelerating universe in the follow-

Ref: [arXiv: 1812.11105] Emergent Dark Universe and the Swampland Criteria Yun-Long Zhang  Holographic Dark Fluid
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After considering (15) with T = 0, we have the identity

hT i2⇤
d� 1

� hT i⇤µ⌫hT iµ⌫⇤ = � ⇢̃⇤c
2

d� 1
hT i⇤. (22)

Thus, assuming hT iµ⌫ = hT iµ⌫⇤ ⌘ � ⇤
d

gµ⌫ in the constraint equation (14), the pure de Sitter spacetime satisfies the
above identity automatically. Notice here that the Brown-York stress energy tensor plays the role of dark energy and
there is no matter or dark matter yet in the set-up.

C. Adding Matters with ⇤CDM Parameterization

Next we consider to add small amount of normal matters in with uniform and isotropic distribution. We take
the assumption that the evolution of the late universe is governed by the ⇤CDM parameterization, and the dark
components are identified as our toy model in (9). Considering (19)(21), our assumption for the constraint relation
(15) becomes

hT i2
d� 1

� hT iµ⌫hT iµ⌫ = � ⇢̃⇤c
2

d� 1

⇥
T + hT i⇤. (23)

This is the main constraint relation in this section. Since in Einstein field equations (9), Tµ⌫ is the baryonic visible
matter with mass density ⇢B . The stress energy tensors of baryonic matter and radiation are,

Tµ⌫ = Tµ⌫
B + Tµ⌫

R , Tµ⌫
B = (⇢B)u

µu⌫ , Tµ⌫
R = (⇢R)u

µu⌫ + pRh
µ⌫ , (24)

where hµ⌫ = gµ⌫ + uµu⌫ , and u⌫ is the velocity in d dimensions. The dark energy and cold dark matter are all
assumed to be related to the extrinsic curvature, and hT iµ⌫ is the Brown-York stress energy tensor playing the role
of cold dark matter and dark energy, and

hT iµ⌫ = hT iµ⌫⇤ + hT iµ⌫D , hT iµ⌫⇤ = �(⇢⇤c
2)gµ⌫ , hT iµ⌫D = (⇢D)uµu⌫ . (25)

Putting them back into the constraint equation (23),

�d� 2

d� 1
⇢2D +

2

d� 1
⇢⇤⇢D +

d

d� 1
⇢2⇤ =

1

d� 1
⇢̃⇤

h
d⇢⇤ + ⇢D + ⇢B + ⇢R � (d� 1)

pR
c2

i
. (26)

If setting ⇢̃⇤ = ⇢⇤ and with equation (22), we arrive at

⇢2D =
⇢⇤

d� 2

h
⇢D � ⇢B � ⇢R + (d� 1)

pR
c2

i
. (27)

When d = 4, the stress energy tensor of radiation is traceless �⇢Rc
2 + 3pR = 0. If taking ⇢D ' 5⇢B , ⇢⇤ '

⇢c � ⇢D � ⇢B , we can recover the Verlinde’s constraint relation (5) approximately. In detail, we consider that our
university is uniform and isotropic at large scale, and take the FRW metric in 3 + 1 dimensions,

ds2d = gµ⌫dx
µdx⌫ = �c2dt2 + a(t)2


dr2

1� kr2
+ r2d⌦2

�
. (28)

In the spatial flat ⇤CDM model with k = 0, the Friedmann equation is given by

H(t)2

H2
0

= ⌦⇤ +
⌦D

a(t)3
+

⌦B

a(t)3
+

⌦R

a(t)4
. (29)

H0 is the Hubble constant today at t = t0 and

H(a) ⌘ ȧ(t)

a(t)
, H2

0 =
4c

4

3
⇢c, (30)

which gives the critical mass density of the universe as ⇢c =
3
4

H2
0

c4 and ȧ(t) is the derivative with respect to the time

t. If requiring a(t0) = 1, from (29) we have 1 = ⌦⇤ +⌦B +⌦D +⌦R, then dividing both sides of equation (27) by ⇢2c ,
we have

⌦2
D ' 1

2
⌦⇤(⌦D � ⌦B) (31)

⌧�1
c ' k2

4⇡Tc
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H(t)2

H2
0

' ⌦B

a(t)3
+ ⌦1/2

⇤


H(t)2

H2
0

+
⌦I

a(t)4

�1/2
(63)

H2

H2
0

' ⌦B

a3
+

s
⌦⇤

⇣H2

H2
0

+
⌦I

a4

⌘
(64)

Or equivalently we have

H(t)2

H2
0

=
⌦M

a(t)3
+

⌦⇤

2
+


⌦2

⇤

4
+

⌦⇤⌦M

a(t)3
+

⌦⇤⌦I

a(t)4

�1/2
. (65)

Notice here that by setting ⌦M = ⌦B + ⌦D and ⌦I = 0, we can recover the usual Friedmann equation of DGP
model in (52). Now let us compare it with the late time evolution of ⇤CDM model.

H(t)2

H2
0

=
⌦B

a(t)3
+

⌦D

a(t)3
+ ⌦⇤. (66)

If only setting ⌦M = ⌦B , and equal the right hand sides of (65) and (66) at a(t0) = 1, we arrive at

⌦2
D = ⌦⇤⌦I � ⌦⇤ (⌦D � ⌦B) . (67)

Thus, once taking

⌦I =
3

2
(⌦D � ⌦B) , (68)

we can recover the constraint relation of our toy model in (4). Considering (68) and plugging the ⇤CDM parameter-
ization (66) into the energy density (56) and pressure (57), we have

⇢H ' ⇢c(⌦⇤ + ⌦D), pH ' �⇢c⌦⇤. (69)

It is also consistent with the ansatz in our toy model (25). Again in order to make the presentation more clear, we here
neglected the contribution of radiation ⌦R and spacial curvature ⌦K , which can be easily included in the equations
above. Here ⌦I e↵ectively contributes to the emergent dark matter. More detailed studies of this holographic model
with non-zero ⌦I will appear in our future work.

IV. CONNECTION WITH VERLINDE’S APPARENT DARK MATTER

Inspired by the emergent gravity by Verlinde in [6], we have proposed the induced gravity from higher dimensional
flat spacetime which gives rise to the similar mechanism in the above sections. In this section, we are trying to
reconcile the inconsistency in Verlinde’s emergent gravity pointed out by [8]. We present a consistent derivation of
Tully-Fisher relation in the frame of the elastic model and try to resolve some issues in the original Verlinde’s story.
The elastic property can also be realized in the holographic models, for example, the blackfold approach [11], or
including the e↵ective mass terms in the bulk [12].

Thus, in order to embed Verlinde’s emergent gravity with elasticity into a bulk, we sketch the total action as
Sd+1 + Sd, where

Sd+1 =
1

2d+1

Z
M

dd+1x
p

�g̃ [Rd+1 � 2⇤d+1 + LM] +
1

d+1

Z
@M

ddx
p�gK, (70)

Sd =
1

2d

Z
@M

ddx
p�g (Rd � 2⇤d) +

Z
@M

ddx
p�gLM . (71)

In the bulk the Lagrange density LM represents the e↵ective term which can provide the holographic elasticity. g̃AB

is bulk metric, gµ⌫ is the induced metric on the boundary and K is the trace of the extrinsic curvature. Like in our
toy model, we can set ⇤d+1 = 0 in the bulk, and study the holographic response of elasticity. One may also add ⇤d

in the boundary action Sd, which plays the role of cosmological constant on the boundary theory, or the tension of
the boundary brane.

2

I. INTRODUCTION

The origin of the dark matter and the dark energy is one of the most important issues in current high energy
physics and cosmology. From observations, only 5% of the components of the current universe is visible to us. At
di↵erent scales, ranging from the galactic scale to the cosmic microwave background (CMB), there are many observed
phenomena to test for various models of dark matter and dark energy [1]. The cold dark matter model which treats
the dark matter as collisionless particles is successful at CMB and larger scales, but at the galactic scale, some
discrepancies were proposed [2]. Moreover, the particle dark matter remains elusive from the direct detection so far
[3]. One of the alternatives to the cold dark matter is the modified Newtonian dynamics or modified gravity [1, 2],
which focus on the small scale crisis that cold dark matter cannot explain. Although those modified gravity theories
seem to be less successful in producing the universe evolution picture agreed with CMB and large scale structure data,
they can explain multiple features in galaxy rotational curves such as Tully-Fisher relation [4], Renzo’s Rule [5], etc.

Recently, E. Verlinde proposed emergent modified gravity from volume contribution of entanglement entropy in
the de Sitter spacetime [6], which leads to the apparent dark matter. It is also related to the idea that Einstein
gravity can be emergent from the entropy force with area law [7]. Although the Verlinde’s derivation in [6] received
some doubts on the consistency in the literature [8], we find several Verlinde’s key ideas rather inspiring. One is the
possibility that our macroscopic notions of spacetime and gravity emerge from an underlying microscopic description,
encouraged by the recent development of entangled entropy and quantum information. Another one is viewing dark
matter as merely a gravitational response of the normal matter on the spacetime, so as to derive the dark matter
distribution around the galaxy, the Tully-Fisher relation.

In this paper, we propose a new viewpoint beyond Verlinde’s emergent gravity, which can be considered as a (3+1)
dimensional holographic screen embedded into a higher dimensional flat spacetime. We identify the holographic stress
energy tensor as that of the total dark components. We firstly construct a toy model, which provides a constraint
relation between the densities of dark matter, dark energy and baryonic matter, in the case considering the Lambda
cold dark matter (⇤CDM) parameterization. Furthermore, we generalize our toy model to the holographic Friedmann-
Robertson-Walker (FRW) universe in a flat bulk, and propose a new parameterization from the holographic model,
where the e↵ective dark matter and dark energy are emergent, and are identified with the Brown-York stress energy
tensor [9]. We also compare our approach to the Dvali-Gabadadze-Porrati(DGP) brane world model [10].

To produce the galaxy rotational curves, we further sketch a holographic elastic model with a de Sitter boundary
and fix an inconsistency in the Verlinde’s paper proposed in [8]. We recover the Tully-Fisher relation from the first law
of thermodynamics and elasticity of the “de Sitter medium”. The elasticity can also be realized in black fold approach
[11] or holographic models [12]. Notice here that we adopt the novel idea of elasticity of dark matter in the Verlinde’s
paper. Because the elasticity seems to capture the nature that the apparent dark matter is only the response of the
presence of the normal matters. In the end, we also comment on the relation of the current construction in this paper
with di↵erent scenarios such as brane world model and holographic models of the universe.

In section II, we first introduce the toy model, which leads to the relation between dark matter component and
baryonic matter component of the current universe. In section III, we generalize our toy model to the holographic
FRW universe, and compare it with the DGP brane world scenario. In section IV, we reproduce the Tully-Fisher
relation, with the help of holographic elasticity model and Verlinde’s assumptions. We briefly compare and discuss
the connection between our toy model and other scenarios, such as brane world models, holographic gravity, emergent
gravity and summarize our results in Section V.

II. A TOY CONSTRAINT FOR THE LATE TIME DARK UNIVERSE

We consider a 3+1 dimensional time-like hypersurface with intrinsic metric gµ⌫ and extrinsic curvature Kµ⌫ , which
is embedded as the boundary of a 4+1 dimensional flat bulk spacetime with finite volume. After adding the localized
stress energy tensor Tµ⌫ on the hypersurface, we assume that the induced Einstein field equations on the boundary
are modified as

Rµ⌫ � 1

2
Rgµ⌫ � 1

L
(Kµ⌫ �Kgµ⌫) = 

4

Tµ⌫ . (1)

The length scale L is related to the positive cosmological constant ⇤ = 3/L2. The Einstein constant 
4

= 8⇡G/c4,
G is the Newton gravitational constant and c is the speed of light. Equivalently, we can rewrite the above modified
Einstein field equations in (1) as

Rµ⌫ � 1

2
Rgµ⌫ = 

4

Tµ⌫ + 
4

hT iµ⌫ , (2)
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It is our main result in (4). If we further consider ⌦
⇤

+ ⌦D + ⌦B ' 1 in the late universe, then

⌦2

D =
1

3
(⌦D � ⌦B + ⌦2

B). (32)

Considering ⌦D ' 5⌦B from (6), as well as ⌦B ' 0.05 ⌧ 1, we can also arrive at the Verlinde’s ⌦2

D ' 4

3

⌦B in
(5). On the other hand, since ⌦B + ⌦D . ⌦

⇤

, despite being not so precise, our de Sitter background is still a
good approximation. However, if we consider the dark matter in smaller scales around the galaxies and compare
with galactic rotational curves, we need to consider the e↵ects of back-reaction of normal matters. This is the same
situation in the earlier universe, when matters or radiations dominate the universe component and can not be treated
as perturbations on the background anymore. In such cases, this toy model turns out to be not enough, we will resort
to the more complicated model in the next section.

III. CONNECTION WITH BRANE WORLD MODEL IN A FLAT BULK

In this section, we consider a more consistent embedding of the FRW metric into one higher dimensional flat
spacetime [14]. We take the assumption that the total stress energy tensor of the dark components, including dark
matter and dark energy, are provided by the holographic stress tensor. We discuss its connection to the well studied
DGP brane world model, and with some special parameter choice, we can recover the constrain relation (4) in our
toy model.

Consider the 4 + 1 dimensional flat bulk M with action S
5

and metric g̃AB , along with the 3 + 1 dimensional time
like boundary @M with action S

4

and induced metric gµ⌫ , where

S
5

=
1

2
5

Z
M

d5x
p

�g̃R+
1


5

Z
@M

d4x
p�gK, (33)

S
4

=
1

2
4

Z
@M

d4x
p�g R+

Z
@M

d4x
p�gLM . (34)

K is the trace of extrinsic curvature, and LM is the Lagrange density of matters localized on the boundary. If choosing
the Gaussian normal coordinates of the bulk metric g̃AB , we have

ds2
5

= g̃ABdx
AdxB = dy2 + g̃µ⌫dx

µdx⌫ . (35)

Assume the hypersurface @M located at y = 0. It is the shared boundary of the half bulk M
+

which covers the
region y > 0 and the half bulk M� which covers the region y < 0.

The bulk equations of motion are given by the variation of the total action with the bulk metric g̃µ⌫ ,

1


5

✓
RAB � 1

2
Rg̃AB

◆
+

1


4

✓
Rµ⌫ � 1

2
Rgµ⌫

◆
g̃µAg̃

⌫
B�(y) = TM

µ⌫ g̃
µ
Ag̃

⌫
B�(y) . (36)

with the matching junction condition at the hypersurface y = 0.

hT iK+

µ⌫ � hT iK�
µ⌫ +

1


4

Gµ⌫ = TM
µ⌫ . (37)

where Gµ⌫ ⌘ Rµ⌫ � 1

2

Rgµ⌫ . The e↵ective stress energy tensor from extrinsic curvature is

hT iK±
µ⌫ ⌘ 1


5

�K±
µ⌫ �K±gµ⌫

�
. (38)

We include the e↵ective cosmological constant in the Lagrangian LM , which leads to the stress tensor

TM
µ⌫ = � 2p�g

�

�gµ⌫

✓Z
@M

d4x
p�gLM

◆
. (39)

The extrinsic curvature is K±
µ⌫ ⌘ g̃Aµ g̃

B
⌫ r̃

(AN±
B)

|@M, and N± is chosen as the normal vector of @M along with the
±y directions, respectively.

We consider that our university is uniform and isotropic at large scale, and take the spatially flat FRW metric in
d = 4 dimensions, with the spatially flat metric

ds2
4

=� c2dt2 + a(t)2
⇥
dr2 + r2d⌦

2

⇤
. (40)
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