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Extending TNS model to describe power spectrum in redshift space, we derive the analytic ex-
pressions for cross power spectrum in redshift space, assuming linear galaxy and velocity biases.

I. PRELIMINARIES

Throughout the report, we work with the distant-observer limit, and assume that the line-of-sight direction is
parallel to the z-axis. Then the observed redshift space may be written as

s=r1— fuy(r)z, (1)

where the quantity u, is the normalized velocity field along the line-of-sight, defined by u, = —v,/(aH f). The density
field in observed redshift space, (%), is expressed in Fourier space as

5 (k) = /d3r{5(r) +FVeun(r) } ot BT b s @)

with p =k, /k.
We are particularly interested in the cross correlation between the different samples (with different bias parameter).
We denote the number density fluctuation of the objects A and B by da and dg. Also, we consider that the velocity

for each object do not simply trace the underlying mass density field, and is labeled as ua . Then, the cross power
spectrum is expressed as

P(S)(k) — /d?}w eik-a} <e—i kM (fAuz-i-AE) |:5A(T) + vauA,Z(T.):| |:5B(T/) + fvzuB,z(TI)}> (3)
with £ = r — r’. We here define

Auy = up o (r) —up . (r). (4)

II. MODELING REDSHIFT-SPACE CROSS POWER SPECTRUM AT WEAKLY NONLINEAR
REGIME

To derive the expression relevant at weakly nonlinear regime, we follow Ref. [1], and rewrite Eq. (3) with

PO (k) :/d?’weik'w<ej1‘41 Ay A3> (5)
with the quantities j;, A; given by
jl =—i kﬂ'7
Al = fAuz

Ay = 6A("°) + fvz uA,z(r)a
A3 = (SB(T‘/) + sz UB7Z(7°/).

Then, with a help of cumulant expansion theorem, we obtain
P(S)(k) — /dgil) eik{l? exp{<6j1A1>c} [<€j1A1A2A3>C + <ej1A1A2>C<€j1A1A3>C} . (6)

Here, (---). indicates the cumulant.

As it is clear from the expression, the exponential prefactor exp{ (efrAn >c} can be non-perturbative, and it lead to
a strong damping even at large scales. We thus keep it untouched. But, at weakly nonlinear scales, we may expand
the rest of the terms regarding j; as a small expansion parameter. Up to the order of O(j?), we obtain

PO (k) ~ /dgm LR exp{<6j1A1>c} [<A2A3>C + (A A As) + 53 ALAS) (AL Ag) + - } (7)



Here, the term 1;j7(A?A5A3). is ignored according to Ref. [1]. For more simplification, we shall assume that
exp{ (e 141 >C} is independent of separation z, and is expressed as (even) function of ku. With this assumption/ansatz,

the model of redshift-space cross power spectrum, PlgsB), is given by

P (k) = Droc(bp) [ Peer (k) + Alk) + B(K)| (8)
with

B () = / Pz R T (A, 45)
;{(k) :jl/dS.’B 6ik'$<A1A2A3>C,

Bk) = 72 / Pk (4,4,)(4,45), )

Below, we explicitly write down the expression of each term in the bracket. In what follows, we assume the linear bias
for 05 and dp, and rewrite them with ba § and bg §, respectively. Similarly, assuming the linear relation, we may write
biased velocity field as ua g = ca g u. With the velocity-divergence field 6 defined by 0 =V -u = -V -v/(afH), we
then have:

Prcuseer (K, 1) = babp Pss(k) + f pu?(bacs + bgea) Prg(k) + f2 p* cacp Poo(K), (10)
BE Z ~ _
k /~L k f/ p p CABO'(p7k_pa_k)_CBBJ(pvka_k_p)}v (11)
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where the quantities Ea, Fx (X =A or B) are the cross bispectrum and power spectrum, respectively, defined by

(27)% 6p (k1 + ks + k3) By (k1. ka, k3)

é(mu):(icuf)%AcB / 5k — p — q) Fa(p) Fis(a), (12)

= (000 {0 8002) + e 1 (2 00k2) Hom 80ks) + e 1 (2 k) }), (13)
Fx(p) = % {bx Pso(p) + ex f (ﬁ%)z Pee(p)}- (14)

We will derive below the explicit expressions for A and B , which are given in powers of y and f.

A. A term

The bispectrum B, given at Eq. (13) is related to the real-space matter bispectra, Bqpe, defined by (@, (ky1)®; (ko) @ (k3)) =
(27)30p (k1 + ko + k3) Bape(k1, ko, k3) with doublet &, = (8, 6). It is given by

_ ko N2 [ kg \ 2
B, (k1, k2, k3) = babg Ba11(kq1, ke, ks) + cacp fz(i) (37) Bogs(ki, ko, k3)

ko s
+bacp f (i) Bsia(k1, k2, k3) + bpea f( 2 ) Baoi (K1, k2, k3)

k3 ko
= Eésym) (k:ly kQ, k3) + E((rnon—sym)(k] ’ kZ- kS) (15)

Note that the first line at RHS or E(,Sy ™) s symmetric under ks <> k3, but the second line or E((;non_sym) is not, and
can become symmetric only in the auto-power spectrum (i.e., by = bg and ¢y = c¢g). This asymmetry gives rise to

non-trial contribution, which makes the A term different from that in the auto-power spectrum case.
To derive the explicit expressions of the A term in powers of p and f, we rewrite Eq. (11) as

Ak, p) = k’uf/

)
z k il 3
+ kp ¥ P p B(non sym) p.k—p,—k)+cp —Dp B(non sym) k—p, —k,p 16
@ kP

z k z m
B(Sym)(nk P — k)+037| p|2 By )(k—p,pv—k)}




where E,(,Sym) and EE,“"“‘SY‘“) are defined below:

k2z

2

) (@)2 Basa (K1, ko, k),

BS™ (ky, ko, k3) = babg Bay1 (K1, ka, ks) + cacs f2( s

O kg o\ 2 Ky N\ 2
B{ronsym) () ko, k3) = bacg f(k%,> 3212(k17k27k3)+bBCAf<k27;> By (k1, k2, k3). (17)

With the form given above, the A is expanded as

3 2
gsz f‘”bl/ dr/ dx

2 { :zlb(ra IL‘) BQab(pa k— D, *k) + Agb(rv ’JJ) B2ab(k - DD, *k) + A:b(rv ’I) B2ﬂb(k e 2 7kap)}a (18)

A(k,

where we define 7 = p/k and x = (k - p)/(kp). Then, according to Appendix B of [1], the coefficients A”,, A%, and
Agb are derived, and the non-vanishing coefficients are expressed as follows:

r?(—2 + 3rx)(z? — 1)
2(1 + 72 — 2rx)
2z + (2 — 62%) + r’z(—3 + 52%))

A2 — r( bac2 A2 — _

21 2(1 + 2 — 2rz) BCA> 22

r(2x + (2 — 622 + ra(—3 + 522))) 2

2
bBcA, Afs =rabacacs,

1 1
Ajy =rababpea, As; =-—

r2(=2+3rx)(z? - 1) ,
CACB7
21 +r2 = 2rx)

A3, =
2 2(1+1r2 —2rz) Ac
A r’(=1+r) i r?(=1+ 3rz)(z® — 1) ~ r2(=1+ 3rx + 322 — 5rad)
Al = bab A2, = 2 3 _ )
11 (1+7r2—2rx) AUBCB, 22 — 2(1+ 12 — 2rz) CACR, 22 201 1 7% — 2rz) CACR,
i1 (=14 3ra)(2® — 1) r2(1 — 322 4 rz(—3 + 522)) ) r2(—1 4 )
12 2(1 472 — 2rx) ABy S 2(1 + r2 — 2rx) ACE, A T4 72 — oy 'BCACB
(19)

The contributions coming from the symmetric bispectrum BE™ e, , A7 A, A7, and A%, coincide with those
obtained in the auto-power spectrum case [2], but others do not necebsarlly reproduce the previous results. Never-
theless, summing up all contributions, the implemented code of the A term with Egs. (18) and (19) reproduces the
previous results if we set by = bg and cp = cg.

B. B term
We first rewrite Eq. (12) with
B 2 30 ¢ _ N .
Bk = P oncn [ GBS [Fatw) o~ )+ Fulle = p) )] (20)

The integrand of this expression is symmetric under p <+ k — p. Then, as similarly done in the auto-power spectrum
case [1], we expand the B term in powers of f and p, :

4 2 0 1
~ n " - Puo(kvV1+ 12 — 2rz) Pyo(kr
e S S ) I B e (21)
n=1a,b=1 -

Note again that r = p/k and = (p- k)/(pk). With the symmetric form of Eq. (20), the integral over r and x can be

replaced with
oo 1 oo Min[1,1/(27)]
/ dr/ de — 2/ dr/ dx. (22)
0 -1 0 -1
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This would help to improve the convergence of numerical integration, avoiding poles. The coefficient ng is derived
based on Appendix B of [1], and the results are summarized below:

~ r? 3r2 3rd

B, = ?(xQ —1)babgeacs, Bi, = 1—6(332 —1)2 cacp(bacs +bgea), Bl = 1—6(x2 —1)? cacg(bacg + bpea),

Bl, = 51—72(3:2 —13 A&, B = g(r + 22 — 3ra?)cacpbabp, B = %(xQ — 1)(r 4 22 — 5ra®)cacp(bacg + bpca),
B = %(1‘2 —1)(=2+ 72+ 6rz — 5r22%)cacp(bacs + bpea), B2, = %(1‘2 — 1)%(—6 4 5r% 4 30rz — 35r%z?)cA ch,
B} =0, B} = %(43;(3 —522) + 7(3 — 302 4 352%))cacp(bacs + bpca)

B3 = 1L6(—8x + 7(=12 4 3622 + 12rz(3 — 522) + r2(3 — 3022 + 352%)))cacp(bacs + bpca),

B3, = %(xQ — 1)(=8z + (=12 4 6022 + 20rz(3 — 722) + 5r2(1 — 142® 4 212%)))A c3,

B3, = %(83:(—3 +52%) — 6r(3 — 302® 4 35z") + 6r°x(15 — 702> + 632") + r®(5 — 212%(5 — 152° + 112")))cA ¢

(23)

Setting ba, bg, ca and cp to unity, the above expressions exactly coincide with those presented in Ref. [1].
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