
On the extension of TNS model to cross power spectra

Atsushi Taruya
(Dated: July 17, 2020)

Extending TNS model to describe power spectrum in redshift space, we derive the analytic ex-
pressions for cross power spectrum in redshift space, assuming linear galaxy and velocity biases.

I. PRELIMINARIES

Throughout the report, we work with the distant-observer limit, and assume that the line-of-sight direction is
parallel to the z-axis. Then the observed redshift space may be written as

s = r − f uz(r)ẑ, (1)

where the quantity uz is the normalized velocity field along the line-of-sight, defined by uz ≡ −vz/(aH f). The density
field in observed redshift space, δ(S), is expressed in Fourier space as

δ(S)(k) =

∫
d3r

{
δ(r) + f ∇zuz(r)

}
ei {k·r−kµ f uz} (2)

with µ ≡ kz/k.
We are particularly interested in the cross correlation between the different samples (with different bias parameter).

We denote the number density fluctuation of the objects A and B by δA and δB. Also, we consider that the velocity
for each object do not simply trace the underlying mass density field, and is labeled as uA,B. Then, the cross power
spectrum is expressed as

P (S)(k) =

∫
d3x eik·x

〈
e−i kµ (f∆uz+∆ε)

[
δA(r) + f∇zuA,z(r)

][
δB(r

′) + f∇zuB,z(r
′)
]〉

(3)

with x = r − r′. We here define

∆uz ≡ uA,z(r)− uB,z(r
′). (4)

II. MODELING REDSHIFT-SPACE CROSS POWER SPECTRUM AT WEAKLY NONLINEAR
REGIME

To derive the expression relevant at weakly nonlinear regime, we follow Ref. [1], and rewrite Eq. (3) with

P (S)(k) =

∫
d3x eik·x

〈
ej1 A1 A2 A3

〉
(5)

with the quantities j1, Ai given by

j1 = −i kµ,

A1 = f ∆uz

A2 = δA(r) + f∇z uA,z(r),

A3 = δB(r
′) + f∇z uB,z(r

′).

Then, with a help of cumulant expansion theorem, we obtain

P (S)(k) =

∫
d3x eik·x exp

{
〈ej1A1〉c

}[〈
ej1A1A2A3

〉
c
+
〈
ej1A1A2

〉
c

〈
ej1A1A3

〉
c

]
. (6)

Here, 〈· · · 〉c indicates the cumulant.
As it is clear from the expression, the exponential prefactor exp

{
〈ej1A1〉c

}
can be non-perturbative, and it lead to

a strong damping even at large scales. We thus keep it untouched. But, at weakly nonlinear scales, we may expand
the rest of the terms regarding j1 as a small expansion parameter. Up to the order of O(j21), we obtain

P (S)(k) '
∫

d3x eik·x exp
{
〈ej1A1〉c

}[〈
A2A3

〉
c
+ j1

〈
A1A2A3

〉
c
+ j21

〈
A1A2

〉
c

〈
A1A3

〉
c
+ · · ·

]
. (7)
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Here, the term 1
2j

2
1〈A2

1A2A3〉c is ignored according to Ref. [1]. For more simplification, we shall assume that
exp

{
〈ej1A1〉c

}
is independent of separation x, and is expressed as (even) function of kµ. With this assumption/ansatz,

the model of redshift-space cross power spectrum, P (S)
AB , is given by

P
(S)
AB(k) = DFoG(kµσ̃v)

[
P̃Kaiser(k) + Ã(k) + B̃(k)

]
(8)

with

P̃Kaiser(k) =

∫
d3x eik·x〈A2A3

〉
c
,

Ã(k) = j1

∫
d3x eik·x〈A1A2A3

〉
c
,

B̃(k) = j21

∫
d3x eik·x〈A1A2

〉〈
A1A3

〉
c
. (9)

Below, we explicitly write down the expression of each term in the bracket. In what follows, we assume the linear bias
for δA and δB, and rewrite them with bA δ and bB δ, respectively. Similarly, assuming the linear relation, we may write
biased velocity field as uA,B = cA,B u. With the velocity-divergence field θ defined by θ = ∇ · u = −∇ · v/(afH), we
then have:

P̃Kaiser(k, µ) = bAbB Pδδ(k) + f µ2(bAcB + bBcA)Pδθ(k) + f2 µ4 cAcB Pθθ(k), (10)

Ã(k, µ) = kµ f

∫
d3p

(2π)3
pz
p2

{
cA B̃σ(p,k − p,−k)− cB B̃σ(p,k,−k − p)

}
, (11)

B̃(k, µ) = (kµ f)2cAcB

∫
d3p d3q

(2π)3
δD(k − p− q) F̃A(p)F̃B(q), (12)

where the quantities B̃σ, F̃X (X =A or B) are the cross bispectrum and power spectrum, respectively, defined by

(2π)3 δD(k1 + k2 + k3)B̃σ(k1,k2,k3)

=
〈
θ(k1)

{
bA δ(k2) + cA f

(k2,z
k2

)2

θ(k2)
}{

bB δ(k3) + cB f
(k3,z

k3

)2

θ(k3)
}〉

. (13)

F̃X(p) =
pz
p2

{
bX Pδθ(p) + cX f

(p2z
p2

)2

Pθθ(p)
}
. (14)

We will derive below the explicit expressions for Ã and B̃, which are given in powers of µ and f .

A. Ã term

The bispectrum B̃σ given at Eq. (13) is related to the real-space matter bispectra, Babc, defined by 〈Φa(k1)Φb(k2)Φc(k3)〉 =
(2π)3δD(k1 + k2 + k3)Babc(k1,k2,k3) with doublet Φa = (δ, θ). It is given by

B̃σ(k1,k2,k3) = bAbB B211(k1,k2,k3) + cAcB f2
(k2,z

k2

)2(k3,z
k3

)2

B222(k1,k2,k3)

+ bAcB f
(k3,z

k3

)2

B212(k1,k2,k3) + bBcA f
(k2,z

k2

)2

B221(k1,k2,k3)

≡ B̃(sym)
σ (k1,k2,k3) + B̃(non-sym)

σ (k1,k2,k3) (15)

Note that the first line at RHS or B̃
(sym)
σ is symmetric under k2 ↔ k3, but the second line or B̃

(non-sym)
σ is not, and

can become symmetric only in the auto-power spectrum (i.e., bA = bB and cA = cB). This asymmetry gives rise to
non-trial contribution, which makes the Ã term different from that in the auto-power spectrum case.

To derive the explicit expressions of the Ã term in powers of µ and f , we rewrite Eq. (11) as

Ã(k, µ) = kµ f

∫
d3p

(2π)3

{
cA

pz
p2

B̃(sym)
σ (p,k − p,−k) + cB

kz − pz
|k − p|2

B̃(sym)
σ (k − p,p,−k)

}
+ kµ f

∫
d3p

(2π)3

{
cA

pz
p2

B̃(non-sym)
σ (p,k − p,−k) + cB

kz − pz
|k − p|2

B̃(non-sym)
σ (k − p,−k,p)

}
(16)
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where B̃
(sym)
σ and B̃

(non-sym)
σ are defined below:

B̃(sym)
σ (k1,k2,k3) = bAbB B211(k1,k2,k3) + cAcB f2

(k2,z
k2

)2(k3,z
k3

)2

B222(k1,k2,k3),

B̃(non-sym)
σ (k1,k2,k3) = bAcB f

(k3,z
k3

)2

B212(k1,k2,k3) + bBcA f
(k2,z

k2

)2

B221(k1,k2,k3). (17)

With the form given above, the Ã is expanded as

A(k, µ) =
k3

(2π)2

3∑
n=1

2∑
a,b

µ2n fa+b−1

∫ ∞

0

dr

∫ 1

−1

dx

×
{
An

ab(r, x)B2ab(p,k − p,−k) + Ãn
ab(r, x)B2ab(k − p,p,−k) + Ân

ab(r, x)B2ab(k − p,−k,p)
}
, (18)

where we define r = p/k and x = (k · p)/(kp). Then, according to Appendix B of [1], the coefficients An
ab, Ãa

ab, and
Âa

ab are derived, and the non-vanishing coefficients are expressed as follows:

A1
11 = r x bAbBcA, A1

21 = −r2(−2 + 3rx)(x2 − 1)

2(1 + r2 − 2rx)
bBc

2
A, A2

12 = r x bAcAcB,

A2
21 =

r(2x+ r(2− 6x2) + r2x(−3 + 5x2))

2(1 + r2 − 2rx)
bBc

2
A, A2

22 = −r2(−2 + 3rx)(x2 − 1)

2(1 + r2 − 2rx)
c2AcB,

A3
22 =

r(2x+ r(2− 6x2 + rx(−3 + 5x2)))

2(1 + r2 − 2rx)
c2AcB

Ã1
11 = − r2(−1 + rx)

(1 + r2 − 2rx)
bAbBcB, Ã2

22 =
r2(−1 + 3rx)(x2 − 1)

2(1 + r2 − 2rx)
cAc

2
B, Ã3

22 =
r2(−1 + 3rx+ 3x2 − 5rx3)

2(1 + r2 − 2rx)
cAc

2
B,

Â1
12 =

r2(−1 + 3rx)(x2 − 1)

2(1 + r2 − 2rx)
bAc

2
B, Â2

12 = −r2(1− 3x2 + rx(−3 + 5x2))

2(1 + r2 − 2rx)
bAc

2
B, Â2

21 = − r2(−1 + rx)

1 + r2 − 2rx
bBcAcB.

(19)

The contributions coming from the symmetric bispectrum B̃
(sym)
σ , i.e., An

11, An
22, Ãn

11, and Ãn
22, coincide with those

obtained in the auto-power spectrum case [2], but others do not necessarily reproduce the previous results. Never-
theless, summing up all contributions, the implemented code of the A term with Eqs. (18) and (19) reproduces the
previous results if we set bA = bB and cA = cB.

B. B̃ term

We first rewrite Eq. (12) with

B̃(k, µ) =
(kµ f)2

2
cAcB

∫
d3p

(2π)3

[
F̃A(p)F̃B(k − p) + F̃A(k − p)F̃B(p)

]
. (20)

The integrand of this expression is symmetric under p ↔ k− p. Then, as similarly done in the auto-power spectrum
case [1], we expand the B̃ term in powers of f and µ, :

B̃(k, µ) =
k3

(2π)2

4∑
n=1

2∑
a,b=1

µ2n (−f)a+b

∫ ∞

0

dr

∫ 1

−1

dx B̃n
ab(r, x)

Pa2(k
√
1 + r2 − 2rx)Pb2(kr)

(1 + r2 − 2rx)a
. (21)

Note again that r ≡ p/k and x = (p ·k)/(pk). With the symmetric form of Eq. (20), the integral over r and x can be
replaced with ∫ ∞

0

dr

∫ 1

−1

dx −→ 2

∫ ∞

0

dr

∫ Min[1, 1/(2r)]

−1

dx. (22)
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This would help to improve the convergence of numerical integration, avoiding poles. The coefficient B̃n
ab is derived

based on Appendix B of [1], and the results are summarized below:

B̃1
11 =

r2

2
(x2 − 1) bAbBcAcB, B̃1

12 =
3r2

16
(x2 − 1)2 cAcB(bAcB + bBcA), B̃1

21 =
3r4

16
(x2 − 1)2 cAcB(bAcB + bBcA),

B̃1
22 =

5r4

16
(x2 − 1)3 c2Ac

2
B, B̃2

11 =
r

2
(r + 2x− 3rx2)cAcBbAbB, B̃2

12 =
3r

8
(x2 − 1)(r + 2x− 5rx2)cAcB(bAcB + bBcA),

B̃2
21 =

3r2

8
(x2 − 1)(−2 + r2 + 6rx− 5r2x2)cAcB(bAcB + bBcA), B̃2

22 =
3r2

16
(x2 − 1)2(−6 + 5r2 + 30rx− 35r2x2)c2Ac

2
B,

B̃3
11 = 0, B̃3

12 =
r

16
(4x(3− 5x2) + r(3− 30x2 + 35x4))cAcB(bAcB + bBcA) ,

B̃3
21 =

r

16
(−8x+ r(−12 + 36x2 + 12rx(3− 5x2) + r2(3− 30x2 + 35x4)))cAcB(bAcB + bBcA),

B̃3
22 =

3r

16
(x2 − 1)(−8x+ r(−12 + 60x2 + 20rx(3− 7x2) + 5r2(1− 14x2 + 21x4)))c2Ac

2
B,

B̃4
22 =

r

16
(8x(−3 + 5x2)− 6r(3− 30x2 + 35x4) + 6r2x(15− 70x2 + 63x4) + r3(5− 21x2(5− 15x2 + 11x4)))c2Ac

2
B.

(23)

Setting bA, bB, cA and cB to unity, the above expressions exactly coincide with those presented in Ref. [1].
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